OpenGL学习——14.投光物_点光源

前情提要:本文代码源自Github上的学习文档“LearnOpenGL”,我仅在源码的基础上加上中文注释。本文章不以该学习文档做任何商业盈利活动,一切著作权归原作者所有,本文仅供学习交流,如有侵权,请联系我删除。LearnOpenGL原网址:https://learnopengl.com/ 请大家多多支持原作者!


当谈及计算机图形学和实时渲染时,OpenGL是一个备受推崇的工具。作为一种跨平台的图形库,它提供了丰富的功能和灵活性,使开发者能够创建令人惊叹的视觉效果。在OpenGL的广阔世界中,点光源是一种无可替代的元素,它们为场景注入现实感和深度。点光源是一种模拟光的源头,可以在三维空间中发射光线,产生逼真的光照效果。无论是为游戏创建逼真的光影效果,还是为模拟现实世界中的光照情况,点光源在OpenGL中扮演着重要的角色。在本文中,我们将深入探讨OpenGL中点光源的基本原理、使用方法以及如何优化其性能,为您揭示点光源背后的奥秘。无论您是OpenGL的新手还是经验丰富的开发者,本文都将为您提供有关点光源的全面指南,帮助您在图形编程的旅程中迈出重要的一步。

项目结构:

vs_light_casters_point_light.txt着色器代码:

#version 330 core

layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;

out vec3 FragPos;  
out vec3 Normal;
out vec2 TexCoords;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);

    FragPos = vec3(model * vec4(aPos, 1.0));
    Normal = mat3(transpose(inverse(model))) * aNormal;
    TexCoords = aTexCoords;
}

fs_light_casters_point_light.txt着色器代码:

#version 330 core

// 材质
struct Material {
    sampler2D diffuse;
    sampler2D specular;    
    float shininess;
}; 

// 光照
struct Light {
    vec3 position;
    vec3 direction;

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;

    float constant;
    float linear;
    float quadratic;
};

out vec4 FragColor; // 输出片段颜色

in vec3 FragPos;  
in vec3 Normal;
in vec2 TexCoords;

uniform vec3 viewPos;
uniform Material material;
uniform Light light;

void main()
{
    // 环境光照
    vec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;
  	
    // 漫反射
    vec3 norm = normalize(Normal);
    vec3 lightDir = normalize(light.position - FragPos - light.direction);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;
    
    // 镜面光照
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);  
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;  
    
    // 光的衰减
    float distance    = length(light.position - FragPos);
    float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));
    ambient  *= attenuation; 
    diffuse  *= attenuation;
    specular *= attenuation;

    // 光照结果
    vec3 result = ambient + diffuse + specular;
    FragColor = vec4(result, 1.0);
}

vs_light_cube.txt着色器代码:

#version 330 core
layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

fs_light_cube.txt着色器代码:

#version 330 core
out vec4 FragColor; // 输出片段颜色

uniform vec3 lightCubeColor;

void main()
{
    FragColor = vec4(lightCubeColor, 1.0);
}

SHADER_H.h头文件代码:

#ifndef SHADER_H

#define SHADER_H

#include <glad/glad.h>;
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>



/* 着色器类 */
class Shader
{
public:
    /* 着色器程序 */
    unsigned int shaderProgram;

    /* 构造函数,从文件读取并构建着色器 */
    Shader(const char* vertexPath, const char* fragmentPath)
    {
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        /* 保证ifstream对象可以抛出异常: */
        vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
        fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
        try
        {
            /* 打开文件 */
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            /* 读取文件的缓冲内容到数据流中 */
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();
            /* 关闭文件处理器 */
            vShaderFile.close();
            fShaderFile.close();
            /* 转换数据流到string */
            vertexCode = vShaderStream.str();
            fragmentCode = fShaderStream.str();
        }
        catch (std::ifstream::failure e)
        {
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
        }

        /* string类型转化为char字符串类型 */
        const char* vShaderCode = vertexCode.c_str();
        const char* fShaderCode = fragmentCode.c_str();

        /* 着色器 */
        unsigned int vertex, fragment;
        int success;
        /* 信息日志(编译或运行报错信息) */
        char infoLog[512];

        /* 顶点着色器 */
        vertex = glCreateShader(GL_VERTEX_SHADER);
        glShaderSource(vertex, 1, &vShaderCode, NULL);
        /* 编译 */
        glCompileShader(vertex);
        /* 打印编译错误(如果有的话) */
        glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
        if (!success)
        {
            glGetShaderInfoLog(vertex, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
        };

        /* 片段着色器 */
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        /* 编译 */
        glCompileShader(fragment);
        /* 打印编译错误(如果有的话) */
        glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
        if (!success)
        {
            glGetShaderInfoLog(fragment, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
        }

        /* 着色器程序 */
        shaderProgram = glCreateProgram();
        /* 连接顶点着色器和片段着色器到着色器程序中 */
        glAttachShader(shaderProgram, vertex);
        glAttachShader(shaderProgram, fragment);
        /* 链接着色器程序到我们的程序中 */
        glLinkProgram(shaderProgram);
        /* 打印连接错误(如果有的话) */
        glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
        if (!success)
        {
            glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
        }

        /* 删除着色器,它们已经链接到我们的程序中了,已经不再需要了 */
        glDeleteShader(vertex);
        glDeleteShader(fragment);
    }

    /* 激活着色器程序 */
    void use()
    {
        glUseProgram(shaderProgram);
    }

    /* 实用程序统一函数,Uniform工具函数,用于设置uniform类型的数值 */
    // ------------------------------------------------------------------------
    void setBool(const std::string& name, bool value) const
    {
        glUniform1i(glGetUniformLocation(shaderProgram, name.c_str()), (int)value);
    }
    // ------------------------------------------------------------------------
    void setInt(const std::string& name, int value) const
    {
        glUniform1i(glGetUniformLocation(shaderProgram, name.c_str()), value);
    }
    // ------------------------------------------------------------------------
    void setFloat(const std::string& name, float value) const
    {
        glUniform1f(glGetUniformLocation(shaderProgram, name.c_str()), value);
    }
    // ------------------------------------------------------------------------
    void setVec2(const std::string& name, const glm::vec2& value) const
    {
        glUniform2fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);
    }
    void setVec2(const std::string& name, float x, float y) const
    {
        glUniform2f(glGetUniformLocation(shaderProgram, name.c_str()), x, y);
    }
    // ------------------------------------------------------------------------
    void setVec3(const std::string& name, const glm::vec3& value) const
    {
        glUniform3fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);
    }
    void setVec3(const std::string& name, float x, float y, float z) const
    {
        glUniform3f(glGetUniformLocation(shaderProgram, name.c_str()), x, y, z);
    }
    // ------------------------------------------------------------------------
    void setVec4(const std::string& name, const glm::vec4& value) const
    {
        glUniform4fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);
    }
    void setVec4(const std::string& name, float x, float y, float z, float w) const
    {
        glUniform4f(glGetUniformLocation(shaderProgram, name.c_str()), x, y, z, w);
    }
    // ------------------------------------------------------------------------
    void setMat2(const std::string& name, const glm::mat2& mat) const
    {
        glUniformMatrix2fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat3(const std::string& name, const glm::mat3& mat) const
    {
        glUniformMatrix3fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat4(const std::string& name, const glm::mat4& mat) const
    {
        glUniformMatrix4fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }

    /* 删除着色器程序 */
    void deleteProgram()
    {
        glDeleteProgram(shaderProgram);
    }
};



#endif

camera.h头文件代码:

#ifndef CAMERA_H

#define CAMERA_H

#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <vector>

/* 定义摄影机移动的几个可能选项。 */
enum Camera_Movement {
    /* 前进 */
    FORWARD,
    /* 后退 */
    BACKWARD,
    /* 左移 */
    LEFT,
    /* 右移 */
    RIGHT,
    /* 上升 */
    RISE,
    /* 下降 */
    FALL
};

/* 默认摄像机参数 */
/* 偏航角 */
const float YAW = -90.0f;
/* 俯仰角 */
const float PITCH = 0.0f;
/* 速度 */
const float SPEED = 2.5f;
/* 鼠标灵敏度 */
const float SENSITIVITY = 0.1f;
/* 视野 */
const float ZOOM = 70.0f;


/* 一个抽象的摄影机类,用于处理输入并计算相应的欧拉角、向量和矩阵,以便在OpenGL中使用 */
class Camera
{
public:
    /* 摄影机属性 */
    /* 位置 */
    glm::vec3 Position;
    /* 朝向 */
    glm::vec3 Front;
    /* 上轴 */
    glm::vec3 Up;
    /* 右轴 */
    glm::vec3 Right;
    /* 世界竖直向上方向 */
    glm::vec3 WorldUp;

    /* 偏航角 */
    float Yaw;
    /* 俯仰角 */
    float Pitch;

    /* 摄影机选项 */
    /* 移动速度 */
    float MovementSpeed;
    /* 鼠标灵敏度 */
    float MouseSensitivity;
    /* 视野 */
    float Zoom;

    /* 矢量的构造函数 */
    Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = position;
        WorldUp = up;
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }
    /* 标量的构造函数 */
    Camera(float posX, float posY, float posZ, float upX, float upY, float upZ, float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = glm::vec3(posX, posY, posZ);
        WorldUp = glm::vec3(upX, upY, upZ);
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }

    /* 返回使用欧拉角和LookAt矩阵计算的视图矩阵 */
    glm::mat4 GetViewMatrix()
    {
        return glm::lookAt(Position, Position + Front, Up);
    }

    /* 处理从任何类似键盘的输入系统接收的输入。接受相机定义ENUM形式的输入参数(从窗口系统中提取) */
    void ProcessKeyboard(Camera_Movement direction, float deltaTime)
    {
        float velocity = MovementSpeed * deltaTime;
        if (direction == FORWARD)
            Position += Front * velocity;
        if (direction == BACKWARD)
            Position -= Front * velocity;
        if (direction == LEFT)
            Position -= Right * velocity;
        if (direction == RIGHT)
            Position += Right * velocity;
        if (direction == RISE)
            Position += WorldUp * velocity;
        if (direction == FALL)
            Position -= WorldUp * velocity;
    }

    /* 处理从鼠标输入系统接收的输入。需要x和y方向上的偏移值。 */
    void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)
    {
        xoffset *= MouseSensitivity;
        yoffset *= MouseSensitivity;

        Yaw += xoffset;
        Pitch += yoffset;

        /* 确保当俯仰角超出范围时,屏幕不会翻转 */
        if (constrainPitch)
        {
            if (Pitch > 89.0f)
                Pitch = 89.0f;
            if (Pitch < -89.0f)
                Pitch = -89.0f;
        }

        /* 使用更新的欧拉角更新“朝向”、“右轴”和“上轴” */
        updateCameraVectors();
    }

    /* 处理从鼠标滚轮事件接收的输入 */
    void ProcessMouseScroll(float yoffset)
    {
        Zoom -= (float)yoffset;
        if (Zoom < 10.0f)
            Zoom = 10.0f;
        if (Zoom > 120.0f)
            Zoom = 120.0f;
    }

private:
    /* 根据摄影机的(更新的)欧拉角计算摄影机朝向 */
    void updateCameraVectors()
    {
        /* 计算新的摄影机朝向 */
        glm::vec3 front;
        front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        front.y = sin(glm::radians(Pitch));
        front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        Front = glm::normalize(front);
        /* 还重新计算右轴和上轴 */
        /* 重新规范(修正)向量,因为当它们的长度越接近0或向上向下看得多时,将会导致移动速度变慢 */
        Right = glm::normalize(glm::cross(Front, WorldUp));
        Up = glm::normalize(glm::cross(Right, Front));
    }
};



#endif

stb_image.h头文件下载地址:

https://github.com/nothings/stb/blob/master/stb_image.h

(需要科学上网)

container2.png图片:

(请右键图片另存为到你的项目文件夹中)

container2_specular.png图片:

(请右键图片另存为到你的项目文件夹中)

stb_image_S.cpp源文件代码:

/* 预处理器会修改头文件,让其只包含相关的函数定义源码 */
#define STB_IMAGE_IMPLEMENTATION
/* 图像加载头文件 */
#include "stb_image.h"

LightCasters_PointLight.cpp源文件代码:

/*
 *
 * OpenGL学习——14.投光物_点光源
 * 2024年2月17日
 *
 */



#include <iostream>

#include "glad/glad.h"
#include "GLFW/glfw3.h"
#include "glad/glad.c"
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

 /* 着色器头文件 */
#include "SHADER_H.h"
/* 摄影机头文件 */
#include "camera.h"
/* 图像加载头文件 */
#include "stb_image.h"

#pragma comment(lib, "glfw3.lib")
#pragma comment(lib, "opengl32.lib")

/* 屏幕宽度 */
const int screenWidth = 1600;
/* 屏幕高度 */
const int screenHeight = 900;

/* 摄影机初始位置 */
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = screenWidth / 2.0f;
float lastY = screenHeight / 2.0f;
bool firstMouse = true;

/* 两帧之间的时间 */
float deltaTime = 0.0f;
float lastFrame = 0.0f;

/* 灯光位置 */
glm::vec3 lightPos(0.0f, 0.0f, -2.0f);

/* 这是framebuffer_size_callback函数的定义,该函数用于处理窗口大小变化的回调函数。当窗口的大小发生变化时,该函数会被调用,
它会设置OpenGL视口(Viewport)的大小,以确保渲染结果正确显示。 */
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    glViewport(0, 0, width, height);
}

/* 处理用户输入 */
void processInput(GLFWwindow* window)
{
    /* 退出 */
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    /* 前进 */
    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    /* 后退 */
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    /* 左移 */
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    /* 右移 */
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
    /* 上升 */
    if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS)
        camera.ProcessKeyboard(RISE, deltaTime);
    /* 下降 */
    if (glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS)
        camera.ProcessKeyboard(FALL, deltaTime);
}

/* 鼠标回调函数 */
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);

    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos;

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

/* 滚轮回调函数 */
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

/* 纹理加载函数 */
unsigned int loadTexture(char const* path)
{
    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char* data = stbi_load(path, &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

int main()
{
    /* 这是GLFW库的初始化函数,用于初始化GLFW库的状态以及相关的系统资源。 */
    glfwInit();

    /* 下面两行代码表示使用OpenGL“3.3”版本的功能 */
    /* 这行代码设置OpenGL上下文的主版本号为3。这意味着我们希望使用OpenGL “3.几”版本的功能。 */
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    /* 这行代码设置OpenGL上下文的次版本号为3。这表示我们希望使用OpenGL “几.3”版本的功能。 */
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);

    /* 这行代码设置OpenGL的配置文件为核心配置文件(Core Profile)。核心配置文件是3.2及以上版本引入的,移除了一些已经被认为过时或不推荐使用的功能。 */
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

    /* 这行代码的作用是设置OpenGL上下文为向前兼容模式,但该程序无需向后兼容,所以注释掉 */
    //glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);

    /* 这行代码创建一个名为"LearnOpenGL"的窗口,窗口的初始宽度为800像素,高度为600像素。最后两个参数为可选参数,用于指定窗口的监视器(显示器),
    在此处设置为NULL表示使用默认的显示器。函数返回一个指向GLFWwindow结构的指针,用于表示创建的窗口。 */
    GLFWwindow* window = glfwCreateWindow(screenWidth, screenHeight, "LearnOpenGL", NULL, NULL);

    /* 这是一个条件语句,判断窗口是否成功创建。如果窗口创建失败,即窗口指针为NULL,执行if语句块内的代码。 */
    if (window == NULL)
    {
        /* 这行代码使用C++标准输出流将字符串"Failed to create GLFW window"打印到控制台。即打印出“GLFW窗口创建失败”的错误信息。 */
        std::cout << "Failed to create GLFW window" << std::endl;

        /* 这行代码用于终止GLFW库的运行,释放相关的系统资源。 */
        glfwTerminate();

        /* 这是main函数的返回语句,表示程序异常结束并返回-1作为退出码。在C++中,返回负数通常表示程序发生错误或异常退出。 */
        return -1;
    }

    /* 这行代码将指定的窗口的上下文设置为当前上下文。它告诉OpenGL将所有渲染操作应用于指定窗口的绘图缓冲区。
     * 这是为了确保OpenGL在正确的窗口上进行渲染。 */
    glfwMakeContextCurrent(window);

    /* 这是一个条件语句,用于检查GLAD库的初始化是否成功。gladLoadGLLoader函数是GLAD库提供的函数,用于加载OpenGL函数指针。
    glfwGetProcAddress函数是GLFW库提供的函数,用于获取特定OpenGL函数的地址。这行代码将glfwGetProcAddress函数的返回值转换为GLADloadproc类型,
    并将其作为参数传递给gladLoadGLLoader函数。如果初始化失败,即返回值为假(NULL),则执行if语句块内的代码。 */
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        /* 这行代码使用C++标准输出流将字符串"Failed to initialize GLAD"打印到控制台。即打印出“GLAD库初始化失败”的错误信息。 */
        std::cout << "Failed to initialize GLAD" << std::endl;

        /* 这是main函数的返回语句,表示程序异常结束并返回-1作为退出码。在C++中,返回负数通常表示程序发生错误或异常退出。 */
        return -1;
    }

    /* 渲染之前必须告诉OpenGL渲染窗口的尺寸大小,即视口(Viewport),这样OpenGL才只能知道怎样根据窗口大小显示数据和坐标。 */
    /* 这行代码设置窗口的维度(Dimension),glViewport函数前两个参数控制窗口左下角的位置。第三个和第四个参数控制渲染窗口的宽度和高度(像素)。 */
    /* 实际上也可以将视口的维度设置为比GLFW的维度小,这样子之后所有的OpenGL渲染将会在一个更小的窗口中显示,
     * 这样子的话我们也可以将一些其它元素显示在OpenGL视口之外。 */
    glViewport(0, 0, screenWidth, screenHeight);

    /* 这行代码设置了窗口大小变化时的回调函数,即当窗口大小发生变化时,framebuffer_size_callback函数会被调用。 */
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    /* 鼠标回调 */
    glfwSetCursorPosCallback(window, mouse_callback);
    /* 滚轮回调 */
    glfwSetScrollCallback(window, scroll_callback);
    /* 隐藏光标 */
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    /* 开启深度测试 */
    glEnable(GL_DEPTH_TEST);

    /* 着色器文件 */
    Shader lightingShader("vs_light_casters_point_light.txt", "fs_light_casters_point_light.txt");
    Shader lightCubeShader("vs_light_cube.txt", "fs_light_cube.txt");

    /* 定义顶点坐标数据的数组 */
    float vertices[] =
    {
        // 顶点坐标           // 法向量             //纹理坐标
        // +X面
         0.5f,  0.5f, -0.5f,   1.0f,  0.0f,  0.0f,   1.0f, 1.0f,   // 右上角
         0.5f, -0.5f, -0.5f,   1.0f,  0.0f,  0.0f,   1.0f, 0.0f,   // 右下角
         0.5f, -0.5f,  0.5f,   1.0f,  0.0f,  0.0f,   0.0f, 0.0f,   // 左下角
         0.5f,  0.5f,  0.5f,   1.0f,  0.0f,  0.0f,   0.0f, 1.0f,   // 左上角
        // -X面              
        -0.5f,  0.5f,  0.5f,  -1.0f,  0.0f,  0.0f,   1.0f, 1.0f,   // 右上角
        -0.5f, -0.5f,  0.5f,  -1.0f,  0.0f,  0.0f,   1.0f, 0.0f,   // 右下角
        -0.5f, -0.5f, -0.5f,  -1.0f,  0.0f,  0.0f,   0.0f, 0.0f,   // 左下角
        -0.5f,  0.5f, -0.5f,  -1.0f,  0.0f,  0.0f,   0.0f, 1.0f,   // 左上角
        // +Y面              
         0.5f,  0.5f, -0.5f,   0.0f,  1.0f,  0.0f,   1.0f, 1.0f,   // 右上角
         0.5f,  0.5f,  0.5f,   0.0f,  1.0f,  0.0f,   1.0f, 0.0f,   // 右下角
        -0.5f,  0.5f,  0.5f,   0.0f,  1.0f,  0.0f,   0.0f, 0.0f,   // 左下角
        -0.5f,  0.5f, -0.5f,   0.0f,  1.0f,  0.0f,   0.0f, 1.0f,   // 左上角
        // -Y面              
         0.5f, -0.5f,  0.5f,   0.0f, -1.0f,  0.0f,   1.0f, 1.0f,   // 右上角
         0.5f, -0.5f, -0.5f,   0.0f, -1.0f,  0.0f,   1.0f, 0.0f,   // 右下角
        -0.5f, -0.5f, -0.5f,   0.0f, -1.0f,  0.0f,   0.0f, 0.0f,   // 左下角
        -0.5f, -0.5f,  0.5f,   0.0f, -1.0f,  0.0f,   0.0f, 1.0f,   // 左上角
        // +Z面              
         0.5f,  0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   1.0f, 1.0f,   // 右上角
         0.5f, -0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   1.0f, 0.0f,   // 右下角
        -0.5f, -0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   0.0f, 0.0f,   // 左下角
        -0.5f,  0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   0.0f, 1.0f,   // 左上角
        // -Z面              
        -0.5f,  0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   1.0f, 1.0f,   // 右上角
        -0.5f, -0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   1.0f, 0.0f,   // 右下角
         0.5f, -0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   0.0f, 0.0f,   // 左下角
         0.5f,  0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   0.0f, 1.0f    // 左上角
    };

    /* 定义索引数据的数组 */
    unsigned int indices[] =
    {
        // 注意索引从0开始! 此例的索引(0,1,2,3)就是顶点数组vertices的下标,这样可以由下标代表顶点组合成矩形
        // +X面
         0,  1,  3, // 第一个三角形
         1,  2,  3, // 第二个三角形
        // -X面
         4,  5,  7, // 第一个三角形
         5,  6,  7, // 第二个三角形
        // +Y面
         8,  9, 11, // 第一个三角形
         9, 10, 11, // 第二个三角形
        // -Y面
        12, 13, 15, // 第一个三角形
        13, 14, 15, // 第二个三角形
        // +Z面
        16, 17, 19, // 第一个三角形
        17, 18, 19, // 第二个三角形
        // -Z面
        20, 21, 23, // 第一个三角形
        21, 22, 23, // 第二个三角形
    };

    /* 方块的位置 */
    glm::vec3 cubePositions[] = {
        glm::vec3(0.0f,  0.0f,  0.0f),
        glm::vec3(2.0f,  5.0f, -7.0f),
        glm::vec3(-1.5f, -2.2f, -2.5f),
        glm::vec3(-3.8f, -2.0f, -6.3f),
        glm::vec3(2.4f, -0.4f, -3.5f),
        glm::vec3(-1.7f,  3.0f, -7.5f),
        glm::vec3(1.3f, -2.0f, -2.5f),
        glm::vec3(1.5f,  2.0f, -4.5f),
        glm::vec3(3.5f,  0.2f, -1.5f),
        glm::vec3(-1.3f,  1.0f, -1.5f)
    };

    /* 创建顶点数组对象(cubeVAO)(lightCubeVAO),顶点缓冲对象(VBO)和元素缓冲对象(EBO) */
    unsigned int cubeVAO, lightCubeVAO;
    unsigned int VBO;
    unsigned int EBO;

    glGenVertexArrays(1, &cubeVAO);
    glGenVertexArrays(1, &lightCubeVAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);

    /* cubeVAO */
    /* 绑定顶点数组对象,顶点缓冲对象和元素缓冲对象 */
    glBindVertexArray(cubeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);

    /* 将顶点数据复制到顶点缓冲对象中 */
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    /* 将索引数据复制到元素缓冲对象中 */
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    /* 设置顶点属性指针,指定如何解释顶点数据 */
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); // 顶点坐标
    /* 启用顶点属性 */
    glEnableVertexAttribArray(0);

    /* 设置顶点属性指针,指定如何解释顶点数据 */
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float))); // 法向量
    /* 启用顶点属性 */
    glEnableVertexAttribArray(1);

    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
    glEnableVertexAttribArray(2);

    /* lightCubeVAO */
    /* 绑定顶点数组对象,顶点缓冲对象和元素缓冲对象 */
    glBindVertexArray(lightCubeVAO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);

    /* 将顶点数据复制到顶点缓冲对象中 */
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    /* 将索引数据复制到元素缓冲对象中 */
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    /* 设置顶点属性指针,指定如何解释顶点数据 */
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); // 顶点坐标
    /* 启用顶点属性 */
    glEnableVertexAttribArray(0);

    /* 解绑顶点数组对象,顶点缓冲对象和元素缓冲对象 */
    glBindVertexArray(0);
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

    /* 材质 */
    unsigned int diffuseMap = loadTexture("container2.png");
    unsigned int specularMap = loadTexture("container2_specular.png");

    lightingShader.use();
    /* 材质漫反射 */
    lightingShader.setInt("material.diffuse", 0);
    /* 材质镜面反射 */
    lightingShader.setInt("material.specular", 1);

    /* 这是一个循环,只要窗口没有被要求关闭,就会一直执行循环内的代码。 */
    while (!glfwWindowShouldClose(window))
    {
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        /* 这行代码调用processInput函数,用于处理用户输入。 */
        processInput(window);

        /* 这行代码设置清空颜色缓冲区时的颜色。在这个示例中,将颜色设置为浅蓝色。 */
        glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
        /* 这行代码清空颜色缓冲区,以准备进行下一帧的渲染。 */
        glClear(GL_COLOR_BUFFER_BIT);
        /* 清除深度缓冲 */
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        /* 使用着色器程序 */
        lightingShader.use();

        /* 摄影机位置 */
        lightingShader.setVec3("viewPos", camera.Position);

        /* 灯光特性 */
        glm::vec3 lightColor;
        lightColor.x = static_cast<float>(1.0f);
        lightColor.y = static_cast<float>(1.0f);
        lightColor.z = static_cast<float>(1.0f);
        glm::vec3 diffuseColor = lightColor   * glm::vec3(0.8f);
        glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f);
        lightingShader.setVec3("light.ambient", ambientColor);
        lightingShader.setVec3("light.diffuse", diffuseColor);
        lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);

        /* 平行光 */
        //glm::vec3 sun_direction(-(float)sin(glfwGetTime()), -(float)cos(glfwGetTime()), 0.0f);
        //lightingShader.setVec3("light.direction", sun_direction);

        /* 点光源 */
        /* 位置 */
        lightingShader.setVec3("light.position", lightPos);
        /* 亮度衰减 */
        lightingShader.setFloat("light.constant", 1.0f);
        lightingShader.setFloat("light.linear", 0.09f);
        lightingShader.setFloat("light.quadratic", 0.032f);

        /* 材质特性 */
        lightingShader.setFloat("material.shininess", 64.0f);

        /* 视角矩阵 */
        glm::mat4 view = glm::mat4(1.0f);
        view = camera.GetViewMatrix();

        /* 透视矩阵 */
        glm::mat4 projection = glm::mat4(1.0f);
        projection = glm::perspective(glm::radians(camera.Zoom), (float)screenWidth / (float)screenHeight, 0.1f, 100.0f);

        /* 将视图矩阵的值传递给对应的uniform */
        lightingShader.setMat4("view", view);
        /* 将投影矩阵的值传递给对应的uniform */
        lightingShader.setMat4("projection", projection);

        /* 模型矩阵 */
        glm::mat4 model;

        /* 绑定顶点数组对象 */
        glBindVertexArray(cubeVAO);
        for (unsigned int i = 0; i < 10; i++)
        {
            /* 计算每个对象的模型矩阵,并在绘制之前将其传递给着色器 */
            model = glm::mat4(1.0f);
            /* 移动 */
            model = glm::translate(model, cubePositions[i]);
            /* 旋转 */
            model = glm::rotate(model, (float)glfwGetTime() * (i + 1) / 5, glm::vec3(-0.5f + ((float)i / 20.0), 1.0f, 0.0f));

            /* 将模型矩阵的值传递给对应的uniform */
            lightingShader.setMat4("model", model);

            // bind diffuse map
            glActiveTexture(GL_TEXTURE0);
            glBindTexture(GL_TEXTURE_2D, diffuseMap);
            // bind specular map
            glActiveTexture(GL_TEXTURE1);
            glBindTexture(GL_TEXTURE_2D, specularMap);

            /* 绘制矩形 */
            glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);
        }

        /* 使用着色器程序 */
        lightCubeShader.use();

        /* 灯方块颜色 */
        lightCubeShader.setVec3("lightCubeColor", 1.0f, 1.0f, 1.0f);

        /* 将投影矩阵的值传递给对应的uniform */
        lightCubeShader.setMat4("projection", projection);
        /* 将视图矩阵的值传递给对应的uniform */
        lightCubeShader.setMat4("view", view);

        /* 赋值为单位矩阵 */
        model = glm::mat4(1.0f);
        /* 移动 */
        model = glm::translate(model, glm::vec3(0.0f, 0.0f, -2.0f));
        /* 缩放 */
        model = glm::scale(model, glm::vec3(0.2f));

        /* 将模型矩阵的值传递给对应的uniform */
        lightCubeShader.setMat4("model", model);

        /* 绑定顶点数组对象 */
        glBindVertexArray(lightCubeVAO);
        /* 绘制矩形 */
        glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);

        /* 这行代码交换前后缓冲区,将当前帧的渲染结果显示到窗口上。 */
        glfwSwapBuffers(window);

        /* 这行代码处理窗口事件,例如键盘输入、鼠标移动等。它会检查是否有事件发生并触发相应的回调函数。 */
        glfwPollEvents();
    }

    /* 删除顶点数组对象 */
    glDeleteVertexArrays(1, &cubeVAO);
    /* 删除顶点缓冲对象 */
    glDeleteBuffers(1, &VBO);
    /* 删除元素缓冲对象 */
    glDeleteBuffers(1, &EBO);
    /* 删除着色器程序 */
    lightingShader.deleteProgram();
    lightCubeShader.deleteProgram();

    /* 这行代码终止GLFW库的运行,释放相关的系统资源。 */
    glfwTerminate();

    /* 程序结束,返回0 */
    return 0;
}

运行结果:

注意!该程序操作方式如下:

WSAD键控制前后左右移动,空格键飞行,shift键下降,
鼠标移动控制视角,鼠标滚轮控制视野缩放。
Esc键退出程序。

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
另外在运行程序时,请打开键盘的英文大写锁定,
否则按shift之后会跳出中文输入法。
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::


非常感谢您的关注和阅读!如果您对本文有任何建议、疑问或其他想法,都欢迎在下方的评论区留言!我非常重视您的反馈,它对我改善和扩展本文的内容非常重要。
我鼓励各位读者分享自己的经验、提出问题或分享有关OpenGL投光物的其他相关信息。您的参与将使这篇博客文章更加丰富和有益。无论您是一个有经验的OpenGL开发者,还是一个对此领域感兴趣的新手,您的想法和观点都是宝贵的。
请不要犹豫,尽管在评论区发表您的意见。如果您有任何关于本文中提到的内容的疑问,我将竭诚为您解答。如果您有其他有关OpenGL投光物的提示、技巧或资源,也请分享给大家。我相信通过我们的互动,我们可以一起学习和提高。
再次感谢您的参与和支持!期待与您的互动!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/392891.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++ 多起点的bfs(五十九)【第六篇】

今天我们来学习多起点的bfs 1.多起点的bfs 在普通的广度优先搜索问题中&#xff0c;为了得到从初始状态到达目标状态的最小操作数&#xff0c;则将初始状态放入队列中。离初始状态由近及远地不断扩展出新的状态&#xff0c;直到搜索到目的状态&#xff0c;或队列为空&#xff…

using--派生类引用基类成员

派生类中using前置声明使用基类成员 using可以用于在派生类中声明需要使用的基类的成员。 这种语法只能在有继承关系的类的派生类中使用&#xff0c;不能在无关的类之间使用。 因为C语法默认在一个类A中使用using引用另一个类B的成员,则A一定继承B&#xff1b;如果没有继承关…

向表中插入数据(单行/多行/插入否则更新/插入否则替换)

目录 插入单行数据 指定属性 省略属性列 多行插入 插入否则更新 格式 on duplicate key含义 不同行数的更改 示例 查看影响行数 语法 插入否则替换 格式 不同行数的更改 示例 插入单行数据 insert into 表名 ( &#xff08;属性列名) ) values (数据) 指定属…

GAN:“左右互搏”的卷积网络,不断优化性能中

hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年经验&#xff01;希望我的分享能帮助到您&#xff01;如需帮助可以评论关注私信我们一起探讨&#xff01;致敬感谢感恩&#xff01; 在一个名为“卷王”的世界里&#xff0c;有一个传奇般的存在——生成对抗网络&#xff…

West-wild

信息收集 # nmap -sn 192.168.1.0/24 -oN live.nmap Starting Nmap 7.94 ( https://nmap.org ) at 2024-02-04 14:45 CST Nmap scan report for 192.168.1.1 Host is up (0.00063s latency). MAC Address: 00:50:56:C0:00:08 (VMware) Nmap scan report …

【大厂AI课学习笔记】【2.1 人工智能项目开发规划与目标】(6)特征工程初步

特征工程是一个非常重要的概念&#xff0c;从特征工程可以领会到机器学习的真谛。 特征工程就是从原始数据转换为特征向量的过程。 特征工程的特点&#xff1a; 特征工程是机器学习中很重要的起始步骤&#xff0c;直接影响效果&#xff0c;需要大量的时间。 数据和特征决定了…

计算机设计大赛 深度学习YOLO抽烟行为检测 - python opencv

文章目录 1 前言1 课题背景2 实现效果3 Yolov5算法3.1 简介3.2 相关技术 4 数据集处理及实验5 部分核心代码6 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习YOLO抽烟行为检测 该项目较为新颖&#xff0c;适合作为竞赛课…

java面试微服务篇

目录 目录 SpringCloud Spring Cloud 的5大组件 服务注册 Eureka Nacos Eureka和Nacos的对比 负载均衡 负载均衡流程 Ribbon负载均衡策略 自定义负载均衡策略 熔断、降级 服务雪崩 服务降级 服务熔断 服务监控 为什么需要监控 服务监控的组件 skywalking 业务…

Dog - Shepherd

逼真的牧羊犬模型。 该模型有57块骨头,14700个三角形和4个LOD级别。LOD已启用并配置。 纹理贴图-反照率(阿尔法蒙版)、AO/金属/粗糙度、法线贴图(均为2048x2048)。 2900 个三角形的手机独立模型。 该资产还有一个没有阿尔法通道的狗模型。 100+动画(IP/RM): 攻击(咬、…

源码网打包,目前有3000多个资源

源码网打包&#xff0c;目前有3000多个资源 需要赶快下手吧&#xff0c;到手可以使用&#xff0c;搭建好和本站一样&#xff0c;全网唯一 优化缩略图演示&#xff1a;https://www.htm.ink默认缩略图演示&#xff1a;https://blog.htm.ink网站截图

【HarmonyOS】鸿蒙开发之Image组件——第3.1章

图片的放缩类型 Cover&#xff08;默认值&#xff09;&#xff1a;保持图片宽高比进行放缩显示&#xff0c;使得图片完全显示在显示边界外。 Image("https://seopic.699pic.com/photo/50110/8335.jpg_wh1200.jpg").width(100).margin({right:10}).objectFit(ImageFi…

JDK8 升级至JDK19

优质博文IT-BLOG-CN 目前部分项目使用JDK8&#xff0c;部分项目使用JDK19因此&#xff0c;环境变量中还是保持JDK8&#xff0c;只需要下载JDK19免安装版本&#xff0c;通过配置IDEA就可以完成本地开发。 一、IDEA 环境设置 【1】通过快捷键CTRL SHIFT ALT S或者File->P…

优思学院|有关Cp、Cpk与缺陷率的说法哪一个正确?

有关Cp、Cpk和缺陷率&#xff0c;一直都是六西格玛、质量管理中一个经常使用&#xff0c;又经常令人困域的概念&#xff0c;今天&#xff0c;我们来讨论一条六西格玛的考试题目&#xff0c;看看我们对Cp、Cpk的理解是否正确。题目是这样的&#xff1a; 问题&#xff1a;对于正…

2024最全的性能测试种类介绍,这6个种类特别重要!

系统的性能是一个很大的概念&#xff0c;覆盖面非常广泛&#xff0c;包括执行效率、资源占用、系统稳定性、安全性、兼容性、可靠性、可扩展性等&#xff0c;性能测试就是描述测试对象与性能相关的特征并对其进行评价而实施的一类测试。 性能测试是一个统称&#xff0c;它其实包…

【Linux】进程的初步认识(一)

进程的初步认识 基本概念描述进程task_struct-PCB的一种task_stuct内容分类 查看进程通过系统调用获取进程标识符 基本概念 要了解进程&#xff0c;首先我们要知道两点 我们可以同时启动多个程序&#xff0c;也就意味着我们可以将多个.exe文件加载到内存操作系统如何去管理这些…

多线程---线程池

1.概述 线程池&#xff08;Thread Pool&#xff09;是一种多线程处理形式&#xff0c;它允许一个或多个线程并行执行&#xff0c;以减少在创建和销毁线程上花费的时间以及系统资源的开销。线程池不仅提高了程序的响应速度&#xff0c;还增强了系统的吞吐量。 线程池主要由一个或…

如果很穷,不妨试一下这个副业,搞钱最快的副业!

前言 相信每一位学习计算机的朋友都想利用自己所学的知识赚点生活费&#xff0c;我也不例外&#xff0c;哈哈哈&#xff0c;学了这么多年&#xff0c;总得让它发挥点价值不是吗。今天就跟大家分享一下我的真实经历&#xff0c;我是如何利用python兼职实现月收入破万的。下面是…

Qt之条件变量QWaitCondition详解(从使用到原理分析全)

QWaitCondition内部实现结构图&#xff1a; 相关系列文章 C之Pimpl惯用法 目录 1.简介 2.示例 2.1.全局配置 2.2.生产者Producer 2.3.消费者Consumer 2.4.测试例子 3.原理分析 3.1.源码介绍 3.2.辅助函数CreateEvent 3.3.辅助函数WaitForSingleObject 3.4.QWaitCo…

Github 2024-02-14 开源项目日报 Top9

根据Github Trendings的统计&#xff0c;今日(2024-02-14统计)共有9个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Rust项目4TypeScript项目1PowerShell项目1Java项目1JavaScript项目1Jupyter Notebook项目1非开发语言项目1Pyth…