半理想架构的Doherty功率放大器理论与仿真-基于GAN器件CGH40010F

半理想架构的Doherty功率放大器理论与仿真-基于GAN器件CGH40010F

理想架构的Doherty功率放大器理论与仿真中已经介绍了如何在ADS中使用理想电流源来对DPA的架构进行仿真。但是理想的电流源太理想了,电压、电流的许多行为都是需要自己使用数学公式去严格定义,稍微出错就会出现问题。

那我们能不能使用现有的管子的模型来进行DPA架构的模拟呢?当然可行,但是必定会和纯理想状态有些出入。

本文工程下载:半理想架构的Doherty功率放大器理论与仿真ADS工程-基于GAN器件CGH40010F
下载完成后手动添加CGH40010F库路径,后运行HB1TonePAE_Pswp_Doherty原理图即可

那么本文,我们来看看怎么用Cree家的CGH40010F来模拟DPA的调制行为

目录

  • 半理想架构的Doherty功率放大器理论与仿真-基于GAN器件CGH40010F
    • 1、经典Doherty架构
    • 2、ADS各部分设计
      • 2.1 单频点的功分器
      • 2.2 CGH40010F的输入匹配与相位延迟线设计
      • 2.3 使用去嵌入封装和最佳B类阻抗Ropt
      • 2.4 输入耦合、稳定电路、偏置隔离
    • 3、结果分析
    • 4、与理论的电压电流的对比

1、经典Doherty架构

参考Switchmode RF and Microwave Power Amplifiers里面的图片,Z2的阻抗为Ropt(B类最佳基波阻抗),Z1是四分之一波长阻抗变换器,将Ropt/2的阻抗变换为50欧姆,因此其阻抗为(Ropt/2*50)^0.5欧姆。至于峰值功放前的四分之一波长线,那个是相位延迟的,因为载波功放那边有一个四分之一波长线了,为了让合路的相位一致,必须也要在峰值功放加上一个。
在这里插入图片描述

2、ADS各部分设计

2.1 单频点的功分器

单频率的功分器的设计可以参考12、ADS使用记录之功分器设计。但是我们此处是理想仿真,可以直接使用理想微带线进行设计,因此直接参考基于ADS的不等分威尔金森功分器设计,把其中的不等分比设置为1就行了。基于ADS的不等分威尔金森功分器设计中已经介绍了设计公式和代码,直接运行:

% 等分比kk=1
kk=1;
Z0=50;
Zu=Z0*sqrt((1+kk)/kk^1.5);
Zd=Z0*sqrt(kk^0.5*(1+kk));
R=Z0*(kk^0.5+kk^-0.5);
disp(['Z0的特征阻抗为:',num2str(Z0),'欧姆']);
disp(['Z02的特征阻抗为:',num2str(Zd),'欧姆']);
disp(['Z03的特征阻抗为:',num2str(Zu),'欧姆']);
disp(['R的特征阻抗为:',num2str(R),'欧姆']);

在这里插入图片描述
因此设计出来就是:
在这里插入图片描述
在这里插入图片描述

2.2 CGH40010F的输入匹配与相位延迟线设计

对于CGH40010F这个管子,一般源牵引的数值都是10欧姆附近。如16、ADS使用记录之AB类功放设计中的这张图:
在这里插入图片描述
当然,兄弟们也可以使用番外5:ADS功放设计之负载牵引与源牵引里面的介绍来自己操作一下。我们这边功分器的输出阻抗是50欧姆,源牵引数值是10欧姆,因此我们需要把50欧姆匹配到10欧姆。此处我们是原型验证,因此直接使用四分之一波长阻抗变换器即可:
在这里插入图片描述
注意看四分之一阻抗变换器后面的延迟线,注意其阻抗和后面的端口阻抗都是10欧姆,运行仿真,效果达标了:
在这里插入图片描述

2.3 使用去嵌入封装和最佳B类阻抗Ropt

我们使用的管子CGH40010F都是经过封装的,因此要进行理想的DPA仿真需要使用去嵌入封装的网络,这是一种非常简单的仿真做法。当然,在我们实际设计匹配电路的时候,我们一般把封装网络当成匹配网络的一部分来设计,当然这个就比较复杂了,在此不多说。

CGH40010F的封装(左)和去封装网络(右)如下:
在这里插入图片描述
直接连在管子的漏极,再把另一个输出端口当成新的电流源平面的漏极即可:
在这里插入图片描述

我们此处仿真就不考虑单管的具体工作类型了,因此直接把阻抗匹配到最佳B类阻抗Ropt。在此处仿真时,我们假设电源电压VDD=25V,考虑膝点电压后VDD=22V,假设基波电流饱和是为1.2A,那么Ropt可以计算为:22/1.2=18.33欧姆。

因此此处假设Ropt=18.33。

2.4 输入耦合、稳定电路、偏置隔离

输入加入电容耦合、在栅极添加RC稳定电路、使用四分之一波长线当供电线,最终DPA的原理图如下:
在这里插入图片描述

3、结果分析

此处仿真时载波功放栅极电压为-3V,峰值功放栅极电压为-6V,在2500MHz进行仿真,这样能让回退看起来明显一点,首先观察效率曲线,可以看到饱和输出功率为44.5dBm左右,回退6dB效率为60%,饱和漏极效率为68%左右
在这里插入图片描述
利用漏极源平面的波形的傅里叶分量来计算负载阻抗的调制情况,可以看到非常经典的阻抗调制曲线,载波功放的调制曲线(左)和峰值功放的负载调制曲线(右),其中载波功放的调制曲线随着功率增大由2Ropt变化为Ropt,峰值功放的负载调制曲线随着功率增大由无穷变化为Ropt
在这里插入图片描述

4、与理论的电压电流的对比

理想架构的Doherty功率放大器理论与仿真中,观察峰值功放和载波功放的电压电流,由于是1:1等分的,在饱和时峰值功放和载波功放的输出功率相同,输出电压、电流也一致,如下所示:
在这里插入图片描述

此处仿真的波形如下,基本差不多吧:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/392658.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

集团企业大数据应用:突破痛点,释放数据价值

在数字经济日益崛起的背景下,集团企业以其管理范围广泛、业务领域多元化和分支机构复杂化的特性,在市场竞争中扮演着重要角色。为了维持和提升这种竞争力,大数据应用成为了集团企业不可或缺的战略工具。然而,在实际应用中&#xf…

武汉灰京文化浅谈手游崛起的新游戏时代

随着智能手机性能的不断提升,手游正逐渐迈向与主机和PC游戏相媲美的领域。高性能处理器、强大的图形处理能力以及智能化技术的融合,使得手游可以实现更高画质和更流畅的操作体验。而虚拟现实(VR)和增强现实(AR&#xf…

模型可视化

模型标题可视化 可视化工具:Graphiz、Netron、ZetaneEngine 7.2.2Graphiz可视化工具 Graphiz是一个由AT&T实验室启动的开源工具包,用于绘制DOT语言脚本描述的图形,使用它可以非常方便地对任何图形进行可视化。 Graphiz的使用步骤包括创…

Oracle 基础入门指南

一、什么是Oracle? Oracle是一款由美国Oracle公司开发的关系型数据库管理系统。它支持SQL查询语言,并提供了丰富的功能和工具,用于管理大规模数据存储、处理和访问。Oracle被广泛应用于企业级应用中,包括金融、电信、零售等各行各…

阿里云服务器部署配置选择全攻略

阿里云服务器配置怎么选择?根据实际使用场景选择,个人搭建网站可选2核2G配置,访问量大的话可以选择2核4G配置,企业部署Java、Python等开发环境可以选择2核8G配置,企业数据库、Web应用或APP可以选择4核8G配置或4核16G配…

测试用例执行计划 - 华为OD统一考试(C卷)

OD统一考试(C卷) 分值: 100分 题解: Java / Python / C 题目描述 某个产品当前迭代周期内有N个特性(F1, F2, ..., FN)需要进行覆盖测试,每个特性都被评估了对应的优先级,特性使用其…

Python六级考试笔记

Python六级考试笔记【源源老师】 六级标准 一、 掌握文件操作及数据格式化。 二、 掌握数据可视化操作。 三、 理解类与对象的概念,初步掌握类与对象的使用。 四、 掌握SQLite数据库基础编程。 五、 掌握简单的使用tkinter的GUI设计。 ​ 1. 文件操作 &#xff0…

海外网红营销指南:打造情感共鸣的6大策略解析

随着全球互联网的发展,海外网红营销已经成为品牌推广的一种重要方式。然而,在竞争激烈的市场中,要让品牌在海外市场脱颖而出,仅仅依靠产品本身的特点和广告的宣传已经不再足够。情感共鸣,作为一种更为深刻、更为有力的…

春节专题|产业7问:区块链厂商的现在和未来——数字资产厂商

2023转瞬即逝,不同于加密领域沉寂一整年后在年末集中爆发,对于我国的区块链厂商而言,稳中求胜才是关键词,在平稳发展的基调下,产业洗牌也悄无声息的到来。 从产业总体而言,在经过了接近3年的快速发展后&…

『运维备忘录』之 CMD 命令详解

运维人员不仅要熟悉操作系统、服务器、网络等只是,甚至对于开发相关的也要有所了解。很多运维工作者可能一时半会记不住那么多命令、代码、方法、原理或者用法等等。这里我将结合自身工作,持续给大家更新运维工作所需要接触到的知识点,希望大…

C高级D5作业

1.#!/bin/bash read -p "请输入一个字符>>" -n 1 c echo case $c in [[:lower:]]) echo "小写" ;; [[:upper:]]) echo "大写" ;; [1-9]) echo "数字" ;; …

使用Python生成二维码的完整指南

无边落木萧萧下,不如跟着可莉一起游~ 可莉将这篇博客收录在了:《Python》 可莉推荐的优质博主首页:Kevin ’ s blog 本文将介绍如何使用Python中的qrcode库来生成二维码。通过简单的代码示例和详细解释,读者将学习如何在Python中轻…

第五次作业:LMDeploy 的量化和部署

参考文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md 基础作业: 使用 LMDeploy 以本地对话、网页Gradio、API服务中的一种方式部署 InternLM-Chat-7B 模型,生成 300 字的小故事(需截图) …

Leetcode-589. N 叉树的前序遍历

题目: 给定一个 n 叉树的根节点 root ,返回 其节点值的 前序遍历 。 n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。 示例 1: 输入:root [1,null,3,2,4,…

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用&#xff0…

Checklist系列:JVM自检四十问,万字整理,推荐收藏

基础 请简单的介绍一下jvm? JVM 全称:Java Virtual Machine(Java虚拟机)简介:JVM是一种虚拟机,它使计算机能够运行Java程序以及用其他语言编写并编译为Java字节码的程序。Java的设计理念之一是"一次编…

桌面文件删除了怎么恢复?恢复文件,3个小秘诀!

在日常使用电脑的过程中,很多用户会习惯性的将文件保存在电脑桌面上。因此不可避免会出现桌面文件丢失的情况。这或许会对我们的工作和学习造成影响。 桌面文件删除了怎么恢复?如果你还没有掌握正确的恢复方法。记得继续往下看,下文有实用的…

C语言—数组一维(含冒泡排序)

1.用数组存储10个整型数&#xff0c;通过键盘输入一个数&#xff0c;找出该数在数组中的下标值&#xff1b; /*1.用数组存储10个整型数&#xff0c;通过键盘输入一个数&#xff0c;找出该数在数组中的下标值&#xff1b;*/#include <stdio.h>int main(void) {int nums[…

C图书信息管理系统 代码+报告

C图书信息管理系统 背景&#xff1a; 在当今信息时代&#xff0c;图书信息管理系统成为图书馆和书店等组织中不可或缺的一部分。随着图书数量的增加和信息化水平的提高&#xff0c;传统的手工管理方式已经无法满足快速、高效、精确的信息管理需求。因此&#xff0c;设计和实现一…

【STM32 物联网】AT指令的介绍

文章目录 前言一、什么是AT指令二、使用AT指令需要注意什么 三、AT指令的分类和提示信息3.1 AT指令的分类3.2 是否保存到Flash的含义3.3 提示信息 总结 前言 本系列STM32物联网使用的为esp8266-01S作为通信模块 在物联网&#xff08;IoT&#xff09;应用中&#xff0c;通信模…