多线程面试题汇总

多线程面试题汇总

  • 一、多线程
    • 1、线程的生命周期
    • 2、线程的创建(函数创建)
    • 3、线程的创建(使用类)
    • 4、守护线程
  • 二、全局解释器锁
    • 1、使用单线程实现累加到500000000
    • 2、使用多线程实现累加到500000000
    • 3、总结
  • 三、线程安全
    • 1、多线程之数据混乱问题
    • 2、有了全局解释器锁(GIL)为什么还需要同步锁?
    • 3、同步锁
      • 3.1、加同步锁(with方法)
      • 3.2、加同步锁(acquire方法和release方法)
  • 四、锁
    • 1、同步锁
    • 2、递归同步锁
    • 3、条件锁
    • 4、事件锁
    • 5、信号量锁
  • 五、死锁
    • 1、案例:鱼和熊掌不可兼得问题
  • 六、进程与线程的区别

一、多线程

1、线程的生命周期

在这里插入图片描述
1、线程的创建:t=threading.Thread()
2、就绪状态:已经获得了除CPU之外的其他资源,正在参与调度,等待被执行,当调度完成之后,立即运行
3、启动状态:获得了CPU时间片段,正在运行
4、等待\阻塞状态:遇到time.sleep()时,会阻塞,暂时不参与调度,等待事件发生
5、中止状态:线程运行结束,run函数运行结束,等待系统回收其线程资源。

2、线程的创建(函数创建)

在这里插入图片描述
在这里插入图片描述

3、线程的创建(使用类)

t=MyThread(name=s[i]) 创建线程,里面的参数代表线程的名字,如果不传,系统会默认有一个名字
在这里插入图片描述

4、守护线程

当我们在程序运行中,执行一个主线程,如果主线程又创建一个子线程,主线程和子线程就分兵两路,分别运行,那么当主线程完成想退出时,会检验子线程是否完成。如果子线程未完成,则主线程会等待子线程完成后再退出。但是有时候我们需要的是只要主线程完成了,不管子线程是否完成,都要和主线程—起退出,这时就可以用setDaemon方法
在这里插入图片描述
输出结果:线程2还没有完整的执行完毕,遇到守护线程就终止执行了。
在这里插入图片描述
t.setDaemon(True) 当前的子线程设置为守护线程
守护线程:随着主线程的终止而终止,不管当前主线程下有多少子线程没有执行完毕,都会终。

二、全局解释器锁

1、GIL锁不是python的特点。而是cpython的特点。

每个线程在执行的时候都需要先获取GIL,保证同一时刻只有一个线程可以执行代码,即同一时刻只有一个线程使用CPU。在CPython中,每一个Python线程执行前都需要去获得GIL锁,获得该锁的线程才可以执行,没有获得的只能等待,当具有GIL锁的线程运行完成后,其他等待的线程就会去争夺GIL锁,这就造成了,在Python中使用多线程,但同一时刻下依旧只有一个线程在运行,所以Python多线程其实并不是「并行」的,而是「并发」。

1、使用单线程实现累加到500000000

import time,threading


def task(n):
    sum=0
    while sum<n:
        sum+=1
    print(f'最后累加哦结果为:{sum}')



if __name__ == '__main__':
    # 单线程
    start=time.time()
    task(500000000)
    end=time.time()
    print(f'单线程结束后,一共运行的时间为:{end-start}')

在这里插入图片描述

2、使用多线程实现累加到500000000

import time,threading


def task(n):
    sum=0
    while sum<n:
        sum+=1
    print(f'最后累加哦结果为:{sum}')



if __name__ == '__main__':
    # 多线程
    start = time.time()
    t1=threading.Thread(target=task,args=(250000000,))
    t2=threading.Thread(target=task,args=(250000000,))

    t1.start()
    t2.start()

    t1.join()
    t2.join()
    end=time.time()
    print(f'单线程结束后,一共运行的时间为:{end-start}') # todo 15.777813196182251

在这里插入图片描述
发现问题:两个线程同时执行并不能比单个线程的执行快
由此发现:CPU密集型(计算密集型)任务采用多线程执行并不能提高计算速度

3、总结

GIL解决办法:

  • 使用其他语言写的python解析器(不推荐,还是用python官方的CPython好)
    • JPython、pypy
  • 不使用多线程,使用多进程-进程里面加协程实现多任务来充分利用多核CPU(推荐)
  • 即使存在GIL,在有IO等待操作的程序中,还是多线程快;当然没有资源等待的还是使用单线程快(科学计算、累加等等)

但是需要注意的是线程有了GIL后并不意味着使用python多线程时不需要考虑线程安全,GIL的存在是为了方便使用C语言CPython解释器的编写者,而顶层使用python时依旧要考虑线程安全。

三、线程安全

当多个线程同时访问一个对象时,不管如何计算,如果调用这个对象的行为都可以获得正确的结果,那就称这个对象时线程安全的。如果出现了“脏数据”。则线程不安全。
脏数据:产生脏数据的原因是,当一个线程在对数据进行修改时,修改到一半时另一个线程读取了未经修改的数据并进行修改。

如何避免脏数据的产生呢?一个办法就是用join方法,即先让一个线程执行完毕再执行另一个线
程。但这样的本质是把多线程变成了单线程,失去了多线程的意义。另一个办法就是用线程锁。

1、多线程之数据混乱问题

在这里插入图片描述
在这里插入图片描述
但是当我把累加次数设置小,就不会出现数据混乱问题
在这里插入图片描述
数据混乱的原因:
cpu分成多个时间片段,启动10线程,分配10个cpu时间片段,当我累加数字设置比较小的时候,在单个cpu时间片段内,for循环代码就执行完,就不会产生数据混乱的。当我数据设置的比较大时,在单个cpu时间片段内,for循环代码就执行不完,并且没有分配2个或2个以上的连续的cpu时间片段,导致一个cpu时间片段没有执行完该线程,下一个线程开始执行了

2、有了全局解释器锁(GIL)为什么还需要同步锁?

全局解析器锁(GIL)加在了全局了,没有加到我所想要的位置,加到什么位置不是我们决定的;
包括修改资源的程序和非修改资源的程序,如果出现在修改资源的相关代码上,肯定会出现脏数据。
同步锁:来获取一把互斥锁。互斥锁就是对共享数据进行锁定,保证同一时刻只有一个线程操作数据,是数据级别的锁。
GIL锁是解释器级别的锁,保证同一时刻进程中只有一个线程拿到GIL锁,拥有执行权限。

2个线程执行任务造成数据混乱

import threading
num=0
def work():
    global num
    for i in range(1000000):
        num+=1
    print('work',num)


def work1():
    global num
    for i in range(1000000):
        num+=1
    print('work1',num)

if __name__ == '__main__':
    t1=threading.Thread(target=work)
    t2=threading.Thread(target=work1)
    t1.start()
    t2.start()
    t1.join()
    t2.join()
    print('主线程执行结果',num)

执行结果:明显数据混乱了

work work1 16347351376208

主线程执行结果 1634735

说明:

代码中:num+=1,可以拆解为
num=100
100+1
num=101
同步锁这3行代码执行完毕了才会释放锁

3、同步锁

同一时刻的一个进程下的一个线程只能占用CPU,要确保这个线程下的程序在一段时间内被CPU执行,那么就要用到同步锁,只需要在对公共数据的操作前后加上上锁和释放锁的操作即可。

3.1、加同步锁(with方法)

from threading import Lock

import threading
num=0
def work():
    global num
    for i in range(1000000):
        with lock:
            num+=1
    print('work',num)


def work1():
    global num
    for i in range(1000000):
        with lock:
            num+=1
    print('work1',num)

if __name__ == '__main__':
    lock=Lock()
    t1=threading.Thread(target=work)
    t2=threading.Thread(target=work1)
    t1.start()
    t2.start()
    t1.join()
    t2.join()
    print('主线程执行结果',num)

work 1845334work1 2000000

主线程执行结果 2000000

3.2、加同步锁(acquire方法和release方法)

from threading import Lock

import threading
num=0
def work():
    global num
    for i in range(1000000):
        lock.acquire()
        num+=1
        lock.release()
    print('work',num)


def work1():
    global num
    for i in range(1000000):
        lock.acquire()
        num += 1
        lock.release()
    print('work1',num)

if __name__ == '__main__':
    lock=Lock()
    t1=threading.Thread(target=work)
    t2=threading.Thread(target=work1)
    t1.start()
    t2.start()
    t1.join()
    t2.join()
    print('主线程执行结果',num)

workwork1 1921583
2000000
主线程执行结果 2000000

四、锁

锁是python提供给我们能够自行操控线程切换的一种手段,使用锁可以让线程的切换变得有序。
一旦线程的切换变的有序后,各个线程之间对数据的访问、修改就变得可控,所以若要保证线程安全,就必须使用锁。

threading模块中提供了5种最常见的锁,下面是按照功能进行划分:

  • 同步锁:Lock(一次只能放行一个)
  • 递归锁:RLock(一次只能放行一个)
  • 条件锁:condition(一次可以放行任意个)
  • 事件锁:event(一次全部放行)
  • 信号量锁:semaphore(一次可以放行特定个)

1、同步锁

上面已讲解

2、递归同步锁

在同步锁的基础上可以做到连续重复使用多次acquire()后再重复使用多次release()的操作,但是一定要注意加锁次数和解锁次数必须一致,否则也将引发死锁现象。
递归锁RLock:它内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。

3、条件锁

条件锁是在递归锁的基础上增加了能够暂停线程运行的功能。并且我们可以使用wait()和notify()来控制线程执行的个数。
注意:条件锁可以自由设定一次放行几个线程。

lock.notify(number):有条件的唤醒线程
lock.wait() :让当前线程暂停。并等待
但是不能唤醒特定某个线程



from threading import Thread,Condition,current_thread


#全局变量
g_number = 0

#子线程的数量
sub_thread_count=10

#正在运行的线程数量
current_run_thread_count=0

#创建一个条件锁
lock=Condition()

def task():
    global g_number,current_run_thread_count
    thread_name=current_thread().name  #当前线程的名字
    with lock:
        print(f'{thread_name}线程得到锁,并直接进入等待状态')
        lock.wait() #让当前线程暂停。并等待
        print(f'{thread_name}线程已经苏醒了,并执行后面的代码')
        g_number+=1
        current_run_thread_count+=1


if __name__ == '__main__':
    thread_list=[]
    for i in range(sub_thread_count):
        t=Thread(target=task,name=f't{i+1}')
        thread_list.append(t)
        t.start()
    while current_run_thread_count<sub_thread_count:
        # 由用户输入
        number=int(input("请输入你要唤醒几个线程,数字:"))
        with lock:
            lock.notify(number)

    print('主线程执行结束')

运行代码
每个线程都能得到这把锁,并进入等待状态,此时线程到13行代码已经阻塞了。10个线程都已经调用了wait()函数
在这里插入图片描述
现在需要唤醒4个线程,输入数字4,t1,t2,t3,t4线程被唤醒
在这里插入图片描述
再唤醒4个线程,t5~t8被唤醒
在这里插入图片描述

4、事件锁

事件锁是基于条件锁来做的,它与条件锁的区别在于一次只能放行全部,不能放行任意个数量的子线程继续运行。
我们可以将事件锁看为红绿灯,当红灯时所有子线程都暂停运行,并进入“等待”状态,当绿灯时所有子线程都恢复“运行”

eventLock.set() 设置绿灯
eventLock.clear() 设置红灯
eventLock.wait() 暂停运行,等待绿灯

import threading

maxSubThreadNumber = 3  #最多子线程为3


def task():
    thread_name = threading.current_thread().name   #获取当前线程的名字
    print("线程开始启动,并马上进入等待状态:%s" % thread_name)
    eventLock.wait()  # 暂停运行,等待绿灯
    print("第一次绿灯打开,线程往下走:%s " % thread_name)
    eventLock.wait()  # 暂停运行,等待绿灯
    print("第二次绿灯打开,线程往下走:%s" % thread_name)


if __name__ == '__main__':
    eventLock = threading.Event()
    for i in range(maxSubThreadNumber):
        subThreadIns = threading.Thread(target=task)
        subThreadIns.start()

    eventLock.set() #设置绿灯
    eventLock.clear()   #设置红灯
    eventLock.set()

在这里插入图片描述

5、信号量锁

Semaphore()
信号量锁也是根据条件锁来做的,它与条件锁的区别如下:
条件锁:一次可以放行任意个处于 “等待” 状态的线程
事件锁:一次可以放行全部的处于 “等待” 状态的线程
信号量锁:通过规定,成批的放行特定个处于 “上锁” 状态的线程

import threading
import time

maxSubThreadNumber = 6


def task():
    thread_name = threading.currentThread().name
    with semaLock:
        print("线程获得锁,开始运行:%s" % thread_name)
        time.sleep(3)


if __name__ == '__main__':
    semaLock = threading.Semaphore(2)
    for i in range(maxSubThreadNumber):
        subThreadIns=threading.Thread(target=task)
        subThreadIns.start()

五、死锁

在多线程程序中,死锁问题很大一部分原因是由于线程同时获取多个锁造成的。
在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁。
3、尽管死锁很难发生,但一旦发生就会造成应用的停止响应。

在这里插入图片描述

1、案例:鱼和熊掌不可兼得问题

import threading
import time

# 代表鱼的锁
mutex_Yu = threading.Lock()
# 代表熊掌的锁
mutex_Xiongzhang = threading.Lock()


class MyThread1(threading.Thread):

    def run(self):
        mutex_Yu.acquire()  # 得到🐟
        print('线程1已经得到鱼了')
        time.sleep(1)

        mutex_Xiongzhang.acquire()
        print('线程1得到熊掌')
        mutex_Xiongzhang.release()
        mutex_Yu.release()


class MyThread2(threading.Thread):

    def run(self):
        mutex_Xiongzhang.acquire()
        print('线程2已经得到熊掌了')
        time.sleep(1)

        mutex_Yu.acquire()
        print('线程2已经得到🐟了')
        mutex_Yu.release()
        mutex_Xiongzhang.release()

if __name__ == '__main__':
    t1 = MyThread1()
    t2 = MyThread2()
    t1.start()
    t2.start()

在这里插入图片描述
解决方法:让多个线程交叉有序的竞争多个资源

#让多个线程交叉有序的竞争多个资源
import threading
import time
# 代表🐟的锁
mutex_Yu = threading.Lock()
# 代表熊掌的锁
mutex_Xiongzhang = threading.Lock()

class MyThread1(threading.Thread):

    def run(self):
        while True:
            mutex_Yu.acquire()  # 得到🐟
            print('线程1已经得到鱼了')
            time.sleep(1)
            mutex_Yu.release()   #释放鱼对应锁

            mutex_Xiongzhang.acquire()  # 得到熊掌
            print('线程1得到熊掌')
            time.sleep(1)
            mutex_Xiongzhang.release()    #释放熊掌对应锁

class MyThread2(threading.Thread):

    def run(self):
        while True:
            mutex_Xiongzhang.acquire()   # 得到熊掌
            print('线程2已经得到熊掌了')
            time.sleep(1)
            mutex_Xiongzhang.release() #释放熊掌对应锁

            mutex_Yu.acquire()     # 得到🐟
            print('线程2已经得到鱼了')
            time.sleep(1)
            mutex_Yu.release()     #释放鱼对应锁

if __name__ == '__main__':
    t1 = MyThread1()
    t2 = MyThread2()
    t1.start()
    t2.start()

六、进程与线程的区别

1、进程是操作系统分配任务的基本单位,进程是python中正在运行的程序;当我们打开1个浏览器时就是开启了一个浏览器进程;
线程是进程中执行任务的基本单位(执行指令集),一个进程中至少有一个线程,当只有一个线程时,称为主线程。
2、进程的创建和销毁消耗资源多;
线程的创建和销毁消耗资源少。
3、线程的切换速度比较快。
4、多进程中,进程与进程之间不能进行通信,如果需要通信需要借助Queue、Pipe;
一个进程中有多个线程时:线程之间可以进行直接通信。
5、多进程可以利用多核CPU:多进程的主要目的是充分利用多核CPU资源。
多线程不可以利用多核CPU:多线程的主要目的是充分利用好某一个单核。
6、进程的启动速度要比线程的启动速度慢。
7、进程与进程是不可以共享同一个数据的(同一个全局变量);
两个线程可以共享同一个进程中的一个数据(同一个全局变量)。
8、进程用到了Process类;
线程用到了Thread类。
9、进程可以独立存在;
线程不能独立存在,依赖进程存在。
10、多进程中不会出现数据混乱、死锁的问题;
多线程中会出现数据混乱、死锁的问题。


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/390013.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM的社区疫情防控管理系统(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于SSM的社区疫情防控管理系统&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spri…

蓝桥杯真题:扑克牌移动

import java.util.*; public class Main {public static List moveCard(List src){if(srcnull) return null;List dst new Vector();for(;;){if(src.size()0) break; // 填空src.add(src.remove(0));//remove(0) 是一个 List 接口中的方法调用&#xff0c;它表示移除列表中指…

163基于matlab的不同目标函数的盲源信号分离基于负熵的

基于matlab的不同目标函数的盲源信号分离基于负熵的&#xff1b;基于负熵的改进算法&#xff1b; 基于峭度的&#xff1b;基于互信息的&#xff1b;基于非线性PCA的。输出解混前后信号结果。程序已调通&#xff0c;可直接运行。 163 负熵、峭度、互信息、PCA 信号处理 (xiaohon…

面试突击1

1.当线程没有拿到资源时&#xff0c;用户态和内核态的一个切换 在操作系统中&#xff0c;进程和线程是执行程序的基本单位。为了管理这些单位&#xff0c;操作系统使用了一种称为“进程状态”的机制&#xff0c;其中包括用户态和内核态两种状态。这两种状态代表了进程或线程在…

通过玩游戏学会AWS

游戏名字&#xff1a; Cloud Quest 类型&#xff1a;亚马逊云科技官方出了一款 3D 角色扮演、虚拟城市建造形式的游戏实验课 进入方法&#xff1a;浏览器搜索 Cloud Quest&#xff08;或扫描下方二维码&#xff09;进入 Cloud Quest 课程页。 选择以下的链接 点击进行注册 进…

Java Web 中forward 和 redirect 的区别

前言 在Java Web开发中&#xff0c;页面跳转是构建用户界面和实现业务逻辑的重要组成部分。Forward&#xff08;转发&#xff09;和Redirect&#xff08;重定向&#xff09;是两种常见的跳转方式&#xff0c;它们分别具有不同的特点和适用场景。正确地选择和使用这两种跳转方式…

拿捏c语言指针(上)

目录 前言 ​编辑 指针 内存与地址 计算机常见单位 理解编址 取地址&#xff0c;指针变量&#xff0c;解引用 取地址 指针变量 解引用 指针变量大小 指针类型的作用 char*解引用后 指针-整数 应用 void*指针 const修饰指针变量 const修饰普通变量 const修饰指…

C++数据结构与算法——字符串

C第二阶段——数据结构和算法&#xff0c;之前学过一点点数据结构&#xff0c;当时是基于Python来学习的&#xff0c;现在基于C查漏补缺&#xff0c;尤其是树的部分。这一部分计划一个月&#xff0c;主要利用代码随想录来学习&#xff0c;刷题使用力扣网站&#xff0c;不定时更…

在已有代码基础上创建Git仓库

在已有代码基础上创建Git仓库 背景方法处理问题 背景 先进行了代码编写&#xff0c;后续想放入仓库方便大家一起合作开发&#xff0c;此时需要在已有代码的基础上建立仓库。 方法 首先在Gitee或者GitHub上创建仓库&#xff0c;这里以Gitee为例。创建完后&#xff0c;我们可以…

java8-用optional取代nu11

本章内容口nu11引用引发的问题&#xff0c;以及为什么要避免nu11引用从nu11到optiona1:以nu11安全的方式重写你的域模型让optiona1发光发热:去除代码中对nu11的检查 读取optiona1中可能值的几种方法口对可能缺失值的再思考 如果你作为Java程序员曾经遭遇过Nu11PointerException…

Excel导入预览与下载

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; Excel导入预览与下载 preview Controller PostMapping("preview")ApiOperation("上传拒付预警预览")public Result<List<ResChargebackWa…

猫头虎分享已解决Bug ‍ || Java Error: Could not find or load main class com.example.Main

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

每日OJ题_算法_递归③力扣206. 反转链表

目录 力扣206. 反转链表 解析代码 力扣206. 反转链表 206. 反转链表 LCR 024. 反转链表 难度 简单 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,…

基于Java (spring-boot)和微信小程序的奶茶点餐小程序

一、项目介绍 基于Java (spring-boot)和微信小程序的奶茶点餐小程序功能&#xff1a;客户端登录、个人中心、点餐、选规格、去结算、取餐、我的信息、管理员登录、管理员首页、用户管理、商品管理、商品编辑、商品种类、订单管理、订单处理、等等等。 适用人群&#xff1a;适合…

MessageQueue --- RabbitMQ

MessageQueue --- RabbitMQ RabbitMQ IntroRabbitMQ 核心概念RabbitMQ 分发类型Dead letter (死信)保证消息的可靠传递 RabbitMQ Intro 2007年发布&#xff0c;是一个在AMQP&#xff08;高级消息队列协议&#xff09;基础上完成的&#xff0c;可复用的企业消息系统&#xff0c;…

Netty Review - 底层零拷贝源码解析

文章目录 Pre概述源码解析入口索引AbstractNioByteChannel.NioByteUnsafe#readallocHandle.allocate(allocator) 小结传统的零拷贝 Pre Netty Review - 直接内存的应用及源码分析 概述 Netty 的零拷贝技术是通过优化数据传输过程中的数据复制操作&#xff0c;以降低系统的开销…

Java 基于 SpringBoot+Vue 的酒店管理系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

Java微服务架构的选择:Spring Cloud、Kubernetes还是Kubernetes + Istio?

微服务架构已经成为现代软件开发的趋势&#xff0c;其可以带来高度可伸缩性、松耦合性和团队自治性等优势。 在Java开发领域中&#xff0c;选择适合的微服务架构是非常关键的决策&#xff0c;本文将探讨Spring Cloud、Kubernetes和KubernetesIstio这三个架构选择的优势和劣势。…

抽象的前端

问题背景&#xff1a;vue3&#xff0c;axios 直接导致问题&#xff1a;路由渲染失败 问题报错&#xff1a;Uncaught SyntaxError: The requested module /node_modules/.vite/deps/axios.js?v7bee3286 does not provide an export named post (at LoginIn.vue:16:9) 引入组…

[NSSRound#16 Basic]Web

1.RCE但是没有完全RCE 显示md5强比较&#xff0c;然后md5_3随便传 md5_1M%C9h%FF%0E%E3%5C%20%95r%D4w%7Br%15%87%D3o%A7%B2%1B%DCV%B7J%3D%C0x%3E%7B%95%18%AF%BF%A2%00%A8%28K%F3n%8EKU%B3_Bu%93%D8Igm%A0%D1U%5D%83%60%FB_%07%FE%A2&md5_2M%C9h%FF%0E%E3%5C%20%95r%D4w…