长短期记忆网络(LSTM)原理解析

        长短期记忆网络(Long Short-Term Memory,简称LSTM)是一种常用于处理序列数据的深度学习模型。它在循环神经网络(Recurrent Neural Network,RNN)的基础上进行了改进,旨在解决传统RNN中的梯度消失和梯度爆炸问题,同时能够更好地捕捉长期依赖关系。

        LSTM的核心思想是引入了称为"门"(gates)的结构,这些门可以选择性地控制信息的流动。LSTM单元由三个主要的门组成:输入门(input gate)、遗忘门(forget gate)和输出门(output gate)。

        下面是对LSTM中每个门的详细说明:

一)输入门(Input Gate)

        输入门控制着新输入信息的流入程度。它通过使用sigmoid激活函数将当前输入与之前的记忆状态进行组合,得到一个介于0和1之间的值。接下来,通过使用另一个tanh激活函数,将当前输入与记忆状态的组合作为新的记忆候选值。

        输入门控制了当前时间步的输入信息对于当前时间步的状态更新的影响程度。当输入门接近1时,输入的影响较大;当输入门接近0时,输入的影响较小。输入门还会结合遗忘门和细胞状态,决定细胞状态的更新。

二)遗忘门(Forget Gate)

         遗忘门控制着之前的记忆状态中哪些信息应该被遗忘。它通过使用sigmoid激活函数来评估上一个记忆状态与当前输入的组合,得到一个介于0和1之间的值。这个值将与之前的记忆状态相乘,以确定哪些信息需要被保留下来。

当遗忘门接近1时,细胞状态的信息被完全保留;当遗忘门接近0时,细胞状态的信息被完全遗忘。 

三)输出门(Output Gate)

         输出门控制着当前时刻的输出值。它通过使用sigmoid激活函数来评估当前的输入和记忆状态的组合,得到一个介于0和1之间的值。同时,使用tanh激活函数来处理当前的记忆状态,并与输出门的值相乘,得到LSTM的当前输出。

当输出门接近1时,细胞状态的信息被充分输出;当输出门接近0时,细胞状态的信息被抑制,不被输出到隐藏状态中。 

下面是使用Python和Keras库实现一个简单的LSTM模型的示例代码:

import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense

# 准备输入序列数据
data = [[0.1, 0.2, 0.3, 0.4, 0.5],
        [0.2, 0.3, 0.4, 0.5, 0.6],
        [0.3, 0.4, 0.5, 0.6, 0.7],
        [0.4, 0.5, 0.6, 0.7, 0.8]]
data = np.array(data)  # 转换为NumPy数组
# 将输入序列转换为LSTM的输入格式:[样本数, 时间步, 特征维度]
data = np.reshape(data, (data.shape[0], data.shape[1], 1))

# 准备目标数据
target = [0.6, 0.7, 0.8, 0.9]
target = np.array(target)

# 创建LSTM模型
model = Sequential()
model.add(LSTM(64, input_shape=(data.shape[1], 1)))  # 添加一个LSTM层,64个隐藏单元
model.add(Dense(1))  # 添加一个全连接层,输出一个值

# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')

# 训练模型
model.fit(data, target, epochs=100, batch_size=1, verbose=2)

# 使用模型进行预测
test_data = [[0.5, 0.6, 0.7, 0.8, 0.9]]
test_data = np.array(test_data)
test_data = np.reshape(test_data, (test_data.shape[0], test_data.shape[1], 1))
prediction = model.predict(test_data)
print("预测结果:", prediction)

        这段代码实现了一个简单的LSTM模型,输入数据是一个包含5个时间步的序列,目标数据是对应的下一个时间步的值。模型包含一个LSTM层和一个全连接层。在训练过程中,使用均方误差作为损失函数,使用Adam优化器进行模型参数的更新。训练完成后,使用模型对一个新的序列进行预测,并打印出预测结果。

        请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体情况进行适当的修改和调整,包括数据预处理、模型结构、超参数选择等。

 通过以上的门机制,LSTM能够对信息进行选择性地存储和遗忘,并在序列中传递重要的信息。这使得LSTM网络能够更好地处理长序列,同时减轻了梯度消失和梯度爆炸问题。

        除了上述的核心门结构,LSTM还有一些变体和扩展,如双向LSTM(Bidirectional LSTM)、多层LSTM(Multi-layer LSTM)等。这些变体可以增强LSTM在不同任务中的表达能力和性能。

        总结来说,LSTM是一种能够有效地处理序列数据、捕捉长期依赖关系的深度学习模型。它通过引入输入门、遗忘门和输出门的机制,选择性地存储和遗忘信息,从而在处理序列数据时取得了很好的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/38810.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

myAgv的slam算法学习以及动态避障下篇

引言 在之前的一篇文章中有提到购入了一台myAGV,以树莓派4B为控制核心的移动机器人。上篇文章中向大家介绍了myAGV如何实现建图、导航以及静态避障,但我们深知,这只是机器人自主导航能力的基础。在实际应用场景中,机器人需要面对复…

Segment Tree 线段树算法(java)

线段树算法 Segment Tree 线段树算法代码演示 蓄水池算法 Segment Tree 线段树算法 什么是线段树算法: 线段树(Segment Tree)是一种基于树结构的数据结构,用于解决区间查询问题,例如区间最大值、最小值、区间和等。线段…

Learning Enriched Features for Fast Image Restoration and Enhancement 论文阅读笔记

这是2022年TPAMI上发表的大名鼎鼎的MIRNetv2,是一个通用的图像修复和图像质量增强模型,核心是一个多尺度的网络 网络结构整体是残差的递归,不断把残差展开可以看到是一些残差块的堆叠。核心是多尺度的MRB。网络用的损失函数朴实无华&#x…

Vue电商项目--登录与注册

登录注册静态组件 刚刚报了一个错误,找不到图片的资源 assets文件夹--放置全部组件共用静态资源 在样式当中也可以使用符号【src别名】。切记在前面加上 注册业务上 先修改原先的接口成这个按钮 然后把input框里面的数据保存到data中 注册业务下 就是点击获…

1. HTML5的新特性

HTML5的新增特性主要是针对于以前的不足, 增了一些新的标签、新的表单和新的表单属性等。 这些新特性都有兼容性问题,基本是IE9以上版本的浏览器才支持, 如果不考虑兼容性问题,可以大量使用这些新特性。 1.1 HTML5 新增的语义化标签 ●<header> : 头部标签 ●<nav&…

什么是Heatmap(热图)图表?用DHTMLX可实现快速构建

DHTMLX Chart是DHTMLX最新发布的JavaScript UI小部件库的核心内容之一&#xff0c;这个图表小部件收到了几个重要的更新&#xff0c;但其中最引人注目的是一个新的数据可视化选项——日历热图。 DHTMLX专注于JavaScript和HTML5 UI小部件和库&#xff0c;以帮助开发人员更快地构…

爬虫相关知识与面试题目

常见的反爬虫和应对方法 参考:https://www.cnblogs.com/bsdr/p/5151891.html 0x01 常见的反爬虫 这几天在爬一个网站&#xff0c;网站做了很多反爬虫工作&#xff0c;爬起来有些艰难&#xff0c;花了一些时间才绕过反爬虫。在这里把我写爬虫以来遇到的各种反爬虫策略和应对的…

python selenium.webdriver 爬取政策文件

文章目录 获取文章链接批量爬取政策文件应用selenium爬取文件信息数据处理导出为excel 获取文章链接 获取中央人民政府网站链接&#xff0c;进入国务院政策文件库&#xff0c;分为国务院文件和部门文件&#xff08;发改委、工信部、交通运输部、市场监督局、商务部等&#xff…

uni.app开发小程序如何获取当前经纬度、位置信息以及如何重新发起授权定位

uni.app开发小程序如何获取当前经纬度、位置信息以及如何重新发起授权定位 前提 先去微信小程序后台申请 wx.getLocation接口1.引入下载的高德小程序SDK2.data中定义所需变量3.onLoad中获取实例 并调用获取经纬度 位置方法4.定义获取定位经纬度 位置信息方法5.用户拒绝授权后,可…

架构训练营学习笔记3-5:消息队列备选架构设计实战

本文属于架构训练营学习笔记系列&#xff1a;模块3的案例讲解 总的来说&#xff0c;这篇从更高的维度去讲&#xff0c;而不是关注消息队列的常见问题&#xff1a;比如消息如何发送&#xff0c;消息如何不丢失 &#xff0c;消息如何不重复。总体上分为2部分&#xff1a;利益干系…

数据可视化:揭开数据的视觉奇迹

随着大数据时代的到来&#xff0c;我们面临着海量的数据&#xff0c;如何从中获取有价值的信息成为一项重要的挑战。数据可视化作为一种强大的工具&#xff0c;通过图表、图形和交互界面&#xff0c;将数据转化为可视化的形式&#xff0c;帮助我们更好地理解和分析数据。 数据可…

用OpenCV进行图像分割--进阶篇

1. 引言 大家好&#xff0c;我的图像处理爱好者们&#xff01; 在上一篇幅中&#xff0c;我们简单介绍了图像分割领域中的基础知识&#xff0c;包含基于固定阈值的分割和基于OSTU的分割算法。这一次&#xff0c;我们将通过介绍基于色度的分割来进一步巩固大家的基础知识。 闲…

kafka(一)

一&#xff1a;kafka架构介绍 1. Brokers kafka集群包括一个或者多个服务器&#xff0c;服务器的节点叫做broker。 2. Topic 类似于数据库中的table。物理上不通的topic会分开存储。一个topic的消息会存储在多个broker上。但是在读取的时候&#xff0c;只要选择好topic&…

autok3s k3d rancher研究

参考 功能介绍 | Rancher文档AutoK3s 是用于简化 K3s 集群管理的轻量级工具&#xff0c;您可以使用 AutoK3s 在任何地方运行 K3s 服务。http://docs.rancher.cn/docs/k3s/autok3s/_index 什么是 AutoK3s k3s是经过完全认证的 Kubernetes 产品&#xff0c;在某些情况下可以替…

Docker 容器生命周期:创建、启动、暂停与停止----从创建到停止多角度分析

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…

vue 限制表情输入

在main.js中加入下列代码 import emoji from ./util/emojiVue.directive(emoji,emoji) 在util文件夹中加入emoji.js 下列代码 const findEle (parent, type) > { return parent.tagName.toLowerCase() type ? parent : parent.querySelector(type)}const emoji {bi…

小程序MobX创建store并实现全局数据共享

查看小程序根目录中是否存在package.json文件 在项目根目录运行cmd 没有package.json文件输入npm init -y初始化一下,初始化一个包管理 安装MobX npm install --save mobx-miniprogram4.13.2 mobx-miniprogram-bindings1.2.1 小程序菜单栏工具–构建npm 根目录创建store文…

Hive概述

Hive 一 Hive基本概念 1 Hive简介 学习目标 - 了解什么是Hive - 了解为什么使用Hive####1.1 什么是 Hive Hive 由 Facebook 实现并开源&#xff0c;是基于 Hadoop 的一个数据仓库工具&#xff0c;可以将结构化的数据映射为一张数据库表&#xff0c;并提供 HQL(Hive SQL)查询…

Dcat-admin使用 Alpine 双向数据绑定

介绍 Alpine.js 这东西真的轻量级&#xff0c;和vue相似&#xff0c;和 livewire 同一个作者&#xff0c;推荐大家使用&#xff0c;可以平替jquery 效果 实现 在 bootstrap.php 引入js Admin::headerJs([https://lf3-cdn-tos.bytecdntp.com/cdn/expire-1-y/alpinejs/3.9.0/…

掘金量化—Python SDK文档—4.数据结构

目录 Python SDK文档 4.数据结构 4.1数据类 Tick - Tick 对象 报价quote - (dict 类型) Bar - Bar 对象 L2Order - Level2 逐笔委托 L2Transaction - Level2 逐笔成交 4.2交易类 Account - 账户对象 Order - 委托对象 ExecRpt - 回报对象 Cash - 资金对象 Position - 持仓对象…