《动手学深度学习》——线性神经网络

参考资料:

  • 《动手学深度学习》

3.1 线性回归

3.1.1 线性回归的基本元素

样本: n n n 表示样本数, x ( i ) = [ x 1 ( i ) , x 2 ( i ) , ⋯   , x d ( i ) ] x^{(i)}=[x^{(i)}_1,x^{(i)}_2,\cdots,x^{(i)}_d] x(i)=[x1(i),x2(i),,xd(i)] 表示第 i i i 个样本。

预测: y ^ = w T x + b \hat{y}=w^Tx+b y^=wTx+b 表示单个样本的预测值, y ^ = X w + b \hat{y}=Xw+b y^=Xw+b 表示所有样本的预测值。

损失函数:
L ( w , b ) = ∑ i = 1 n 1 2 ( y ^ ( i ) − y ( i ) ) L(w,b)=\sum\limits_{i=1}^{n}\frac12\Big(\hat{y}^{(i)}-y^{(i)}\Big) L(w,b)=i=1n21(y^(i)y(i))

随机梯度下降:在每次迭代中,我们首先随机抽样一个小批量 B \mathcal{B} B , 它是由固定数量的训练样本组成的。然后按照如下方式更新参数:
( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum\limits_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b) (w,b)(w,b)BηiB(w,b)l(i)(w,b)
其中, η \eta η 为学习率,是一个超参数。

3.1.2 矢量化加速

尽可能使用效率较高的线性代数库。

3.1.3 正态分布与平方损失

假设观测存在噪声 ϵ \epsilon ϵ
y = w ⊤ x + b + ϵ , y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, y=wx+b+ϵ,
ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim N(0, \sigma^2) ϵN(0,σ2)

此时有条件概率为:
P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right) P(yx)=2πσ2 1exp(2σ21(ywxb)2)
于是似然函数为:
L ( w , b ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) L(w,b) = \prod\limits_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}) L(w,b)=i=1np(y(i)x(i))
取对数再加负号,得:
− l ( w , b ) = ∑ i = 1 n ( 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 ) . -l(w,b) = \sum\limits_{i=1}^n \bigg(\frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2\bigg). l(w,b)=i=1n(21log(2πσ2)+2σ21(y(i)wx(i)b)2).
由于 π , σ \pi,\sigma π,σ 均为常数,故由上式可知,对线性模型的最小化均方误差等价于极大似然估计。

3.1.4 从线性回归到深度网络

image-20230704162948713

3.2 线性回归的从零开始实现

3.2.1 生成数据集

假定我们要生成一个包含 1000 个样本的数据集,每个样本包含从标准正态分布中采样的 2 个特征,样本的标签为:
y = X w + b + ϵ \mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon y=Xw+b+ϵ
其中, w = [ 2 , − 3.4 ] ⊤ \mathbf{w} = [2, -3.4]^\top w=[2,3.4] b = 4.2 b = 4.2 b=4.2 ϵ \epsilon ϵ 服从均值为 0 ,标准差为 0.01 的正态分布。

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    # 如果没有y.reshape,那么y将只有一个维度
    return X, y.reshape((-1, 1))

3.2.2 读取数据集

由于随机梯度下降法要求我们每次从样本中随机抽取一部分样本,所以我们可以定义 data_iter 用于样本的抽取:

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    # 在一轮训练中要用到所有的样本
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        # 每次参数更新只用到一小部分样本
        yield features[batch_indices], labels[batch_indices]

上面的代码仅用于理解抽取样本的过程,实际实现时可以使用内置的迭代器。

3.2.3 初始化参数

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

3.2.4 定义模型

def linreg(X, w, b):
    """线性回归模型"""
    return torch.matmul(X, w) + b

3.2.5 定义损失函数

def squared_loss(y_hat, y):
    """均方损失"""
    # 这里的y.reshape其实是没有必要的,因为labels在前面已经reshape过了
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

3.2.6 定义优化算法

def sgd(params, lr, batch_size):
    """小批量随机梯度下降"""
    # 表示下一个代码块不需要进行梯度计算
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            # 清空梯度
            param.grad.zero_()

3.2.7 训练

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

3.3 线性回归的简洁实现

3.3.1 生成数据

这部分和 3.2.1 相同。

3.3.2 读取数据集

from torch.utils import data

我们可以直接使用 data 中的 API 来进行样本抽样:

def load_array(data_arrays, batch_size, is_train=True):
    """构造一个PyTorch数据迭代器"""
    # TensorDataset相当于把所有tensor打包,传入的tensor的第0维必须相同
    # *的作用是“解压”参数列表
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
# 访问数据
for input,label in data_iter:
    print(input,label)

3.3.3 定义模型

# nn是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

上面的代码中,Sequential 可以将多个层串联在一起;Linear 实现了全连接层,其参数 2,1 指定了输入的形状和输出的形状。

3.3.4 初始化模型参数

# net[0]表示选中网络中的第0层
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

3.3.5 定义损失函数

# 返回所有样本损失的均值
loss = nn.MSELoss()

3.3.6 定义优化算法

# SGD的输入为参数和超参数
trainer = torch.optim.SGD(net.parameters(), lr=0.03)

3.3.7 训练

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        # 使用优化器对参数进行更新
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

3.4 softmax回归

3.4.1 分类问题

一般将不同的类别用独热编码表示。

3.4.2 网络架构

假设每个样本有 4 个特征和 3 种可能的类别,则 softmax 回归的网络结构如下图所示:

image-20230704162856668

3.4.3 全连接层的参数开销

一般而言全连接层有 d d d 个输入和 q q q 个输出,则其参数开销为 O ( d p ) O(dp) O(dp)

3.4.4 softmax运算

对于分类问题,我们想得到的是输入属于每一种类别的概率,所以我们要对输出进行一定的处理,使之满足概率基本公理:
y ^ = s o f t m a x ( o ) 其中 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat{\mathbf{y}} = \mathrm{softmax}(\mathbf{o})\quad \text{其中}\quad \hat{y}_j = \frac{\exp(o_j)}{\sum\limits_k \exp(o_k)} y^=softmax(o)其中y^j=kexp(ok)exp(oj)
显然, y ^ \hat{\mathbf{y}} y^ 的每个分量恒正且和为 1 1 1 ,且 softmax 不会改变 o \mathbf{o} o 之间的大小顺序。

3.4.5 小批量样本的矢量化

KaTeX parse error: Expected 'EOF', got '&' at position 13: \mathbf{O} &̲= \mathbf{X} \m…

3.4.6 损失函数

softmax 回归的似然函数为:
L ( θ ) = ∏ i = 1 n P ( y ( i ) ∣ x ( i ) ) L(\theta)=\prod\limits_{i=1}^n P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) L(θ)=i=1nP(y(i)x(i))
取负对数,得:
− log ⁡ L ( θ ) = ∑ i = 1 n − log ⁡ P ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 n ∑ j = 1 q − y j log ⁡ y ^ j \begin{align} -\log L(\theta)&=\sum\limits_{i=1}^n -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)})\notag\\ &=\sum\limits_{i=1}^n\sum\limits_{j=1}^q-y_j\log \hat{y}_j \end{align} logL(θ)=i=1nlogP(y(i)x(i))=i=1nj=1qyjlogy^j

解释以下上面的式子:因为样本的标签是一个长度为 q q q 的独热编码,所以里面的求和实际上就是求由输入推出其标签的条件的概率的负对数,这与 − log ⁡ P ( y ( i ) ∣ x ( i ) ) -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) logP(y(i)x(i)) 是等价的。

称:
l ( y , y ^ ) = ∑ j = 1 q − y j log ⁡ y ^ j l(\mathbf{y}, \hat{\mathbf{y}})=\sum\limits_{j=1}^q-y_j\log \hat{y}_j l(y,y^)=j=1qyjlogy^j
交叉熵损失(cross-entropy loss)。
l ( y , y ^ ) = − ∑ j = 1 q y j log ⁡ exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) = ∑ j = 1 q y j log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j = log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j ∂ o j l ( y , y ^ ) = exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) − y j = s o f t m a x ( o ) j − y j \begin{aligned} l(\mathbf{y}, \hat{\mathbf{y}}) &= - \sum_{j=1}^q y_j \log \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)}\notag \\ &= \sum_{j=1}^q y_j \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j\notag\\ &= \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j\notag\\ \partial_{o_j} l(\mathbf{y}, \hat{\mathbf{y}}) &= \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} - y_j = \mathrm{softmax}(\mathbf{o})_j - y_j\notag \end{aligned} l(y,y^)ojl(y,y^)=j=1qyjlogk=1qexp(ok)exp(oj)=j=1qyjlogk=1qexp(ok)j=1qyjoj=logk=1qexp(ok)j=1qyjoj=k=1qexp(ok)exp(oj)yj=softmax(o)jyj
可以看出,梯度是观测值 y y y 和估计值 y ^ \hat{y} y^ 之间的差异,这使梯度计算在实践中变得容易很多。

3.5 图像分类数据集

3.5.2 读取小批量数据

batch_size = 256

def get_dataloader_workers():
    """使用4个进程来读取数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())

3.6 softmax回归的从零开始实现

3.6.1 初始化模型参数

输入是 28*28 的图像,可以看作长度为 784 的向量;输出为属于 10 个可能的类别的概率,故 W W W 应为 784*10 的矩阵, b b b 为 1*10 的行向量:

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

3.6.2 定义softmax操作

实现softmax由三个步骤组成:

  1. 对每个项求幂;
  2. 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
  3. 将每一行除以其规范化常数,确保结果的和为1。

对应的代码为:

def softmax(X):
    X_exp = torch.exp(X)
    # 确保求和之后张量的维度不变
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制

3.6.3 定义模型

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

这里的输入为什么只是一张图像呢?

3.6.4 定义损失函数

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)

其中,y 为标签列表,代表样例的类别编号,如 [0,1,3]

3.6.5 分类精度

精度(accuracy)= 正确预测数量 / 总预测数量

def accuracy(y_hat, y):
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

上面的代码表示:如果 y_hat 是矩阵,那么假定第二个维度存储每个类的预测分数。 我们使用 argmax 获得每行中最大元素的索引来获得预测类别。 然后我们将预测类别与真实 y 元素进行比较。 由于等式运算符 “==” 对数据类型很敏感, 因此我们将 y_hat 的数据类型转换为与 y 的数据类型一致。 结果是一个包含0(错)和1(对)的张量。 最后,我们求和会得到正确预测的数量。

3.7 softmax回归的简洁实现

3.7.1 初始化模型参数

# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

# apply会对net里的每一层执行init_weights函数
# 所以init_weights函数里的m是用来限定只初始化Linear层参数的
net.apply(init_weights);

3.7.2 定义损失函数

CorssEntropyLoss 的输入为 o \mathbf{o} o (未经过 softmax)和标签列表,输出为交叉熵。也就是说,我们在计算损失的时候不需要将输出通过 softmax 转化为概率,这是因为 softmax 中的指数运算非常容易溢出。

# none表示不合并结果,即loss为一个列表,元素为每个样本的交叉熵
# 这里之所以选择none,是因为后面既要用到损失的总和,又要用到损失的均值
loss = nn.CrossEntropyLoss(reduction='none')

3.7.3 优化算法

trainer = torch.optim.SGD(net.parameters(), lr=0.1)

3.7.4 训练

# 累加器类
class Accumulator:
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n
	
    # 将参数列表逐个加到累加器里
    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]
def train_epoch_ch3(net, train_iter, loss, updater):
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]
def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            # 这里的accuracy出自3.6.5
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        # 训练一轮
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        # 在测试集上测试精度
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    # 这条代码的意思是:如果train_loss<0.5则继续执行,否则报错,报错内容为"train_loss"
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

3.7.5 预测

使用 y_hat.argmax(axis=1) 即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/38522.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《实战AI低代码》:普元智能化低代码开发平台发布,结合专有模型大幅提升软件生产力

在7月6日举办的“低代码+AI”产品战略发布会上,普元智能化低代码开发平台正式发布。该平台融合了普元自主研发的专有模型,同时也接入了多款AI大模型的功能。它提供了一系列低代码产品,包括中间件、业务分析、应用开发、数据中台和业务流程自动化等,旨在简化企业的复杂软件生…

Nginx学习

文章目录 Nginx什么是NginxLinux安装与配置Nginx编译安装Nginxnignx使用nginx默认首页配置案例 localtion的匹配规则Nginx虚拟主机基于多IP的虚拟主机基于多端口的虚拟主机基于域名的虚拟机主机 反向代理案例①案例② 负载均衡案例①案例②分配策略 动静分离案例 配置Nginx网关…

文心一言 VS 讯飞星火 VS chatgpt (58)-- 算法导论6.4 2题

文心一言 VS 讯飞星火 VS chatgpt &#xff08;58&#xff09;-- 算法导论6.4 2题 二、试分析在使用下列循环不变量时&#xff0c;HEAPSORT 的正确性&#xff1a;在算法的第 2~5行 for 循环每次迭代开始时&#xff0c;子数组 A[1…i]是一个包含了数组A[1…n]中第i小元素的最大…

【Distributed】zookeeper+kafka的应用及部署

文章目录 一、zookeeper1. zookeeper的概述1.1 Zookeeper 定义1.2 Zookeeper 工作机制1.3 Zookeeper 特点1.4 Zookeeper 数据结构1.5 Zookeeper 应用场景1.6 Zookeeper 选举机制第一次启动选举机制非第一次启动选举机制选举Leader规则 2. 部署 Zookeeper 集群2.1 安装前准备2.2…

day52

思维导图 比较指令结果的条件码 练习 汇编实现1-100的累加 .text .global _strat _start: mov r0,#0mov r1,#0 add_fun:add r0,r0,#1cmp r0,#100addls r1,r1,r0bls add_fun .end

机器学习技术(三)——机器学习实践案例总体流程

机器学习实践案例总体流程 文章目录 机器学习实践案例总体流程一、引言二、案例1、决策树对鸢尾花分类1.数据来源2.数据导入及描述3.数据划分与特征处理4.建模预测 2、各类回归波士顿房价预测1.案例数据2.导入所需的包和数据集3.载入数据集&#xff0c;查看数据属性&#xff0c…

JVM重点整理

一、虚拟机架构图 二、类加载过程 类加载器的作用&#xff1a;负责把class文件加载到内存中 类加载过程&#xff1a; 加载&#xff1a; 通过类的全限定名获取此类的二进制字节流文件的编码结构---->运行时的内存结构内存中生成一个class对象 链接&#xff1a; 验证&#x…

【网络】socket——预备知识 | 套接字 | UDP网络通信

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《网络》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 在前面本喵对网络的整体轮廓做了一个大概的介绍&#xff0c;比如分层&#xff0c;协议等等内容&#x…

【QT】元对象系统学习笔记(一)

QT元对象系统 01、元对象系统1.1、 元对象运行原则1.2、 Q_OBJECT宏1.3、 Qt Creator启动元对象系统1.4、 命令行启动元对象&#xff08;不常用&#xff09; 02、反射机制2.1、 Qt实现反射机制2.2、 反射机制获取类中成员函数的信息2.1.1、 QMetaMethon类2.1.2、QMetaObject类 …

【UE4 塔防游戏系列】07-子弹对敌人造成伤害

目录 效果 步骤 一、让子弹拥有不同伤害 二、敌人拥有不同血量 三、修改“BP_TowerBase”逻辑 四、发射的子弹对敌人造成伤害 效果 步骤 一、让子弹拥有不同伤害 为了让每一种子弹拥有不同的伤害值&#xff0c;打开“TotalBulletsCategory”&#xff08;所有子弹的父类…

架构训练营:3-3设计备选方案与架构细化

3架构中期 什么是备选架构&#xff1f; 备选架构定义了系统可行的架构模式和技术选型 备选方案筛选过程 头脑风暴 &#xff1a;对可选技术进行排列组合&#xff0c;得到可能的方案 红线筛选&#xff1a;根据系统明确的约束和限定&#xff0c;一票否决某些方案&#xff08;主要…

为 GitHub 设置 SSH 密钥

1. 起因 给自己的 github 改个名&#xff0c;顺便就给原来 Hexo 对应的仓库也改了个名。然后发现 ubhexo clean && hexo generate && hexo deploy 失败了&#xff0c;报错如下&#xff1a; INFO Deploying: git INFO Clearing .deploy_git folder... INFO …

Hive自定义函数

本文章主要分享单行函数UDF&#xff08;一进一出&#xff09; 现在前面大体总结&#xff0c;后边文章详细介绍 自定义函数分为临时函数与永久函数 需要创建Java项目&#xff0c;导入hive依赖 创建类继承 GenericUDF&#xff08;自定义函数的抽象类&#xff09;&#xff08;实现…

仓库管理软件有哪些功能?2023仓库管理软件该如何选?

对于现代企业或批发零售商&#xff0c;高效的仓库管理是确保供应链运作顺畅、库存控制精准的关键要素。在数字化时代&#xff0c;越来越多的企业和商户意识到采用仓库管理软件的重要性。 无论您是中小型企业还是中小商户&#xff0c;仓库管理都是不可忽视的一环。 一、选择仓库…

边缘计算在智慧校园应用,实现校园智能化管理

随着科技的发展和互联网技术进步&#xff0c;校园管理正逐步实现数字化、智能化转型。边缘计算作为一种新兴技术&#xff0c;通过在离数据源较近的地方进行数据处理&#xff0c;实现了实时性分析与响应&#xff0c;为校园带来了更智能、安全的管理方式。 学生学习状态监控 AI动…

AI Chat 设计模式:8. 门面(外观)模式

本文是该系列的第八篇&#xff0c;采用问答式的方式展开&#xff0c;问题由我提出&#xff0c;答案由 Chat AI 作出&#xff0c;灰色背景的文字则主要是我的一些思考和补充。 问题列表 Q.1 请介绍一下门面模式A.1Q.2 该模式由哪些角色组成呢A.2Q.3 举一个门面模式的例子A.3Q.4…

串口wifi6+蓝牙二合一系列模块选型参考和外围电路参考设计-WG236/WG237

针对物联网数据传输&#xff0c;智能控制等应用场景研发推出的高集成小尺寸串口WiFi串口蓝牙的二合一组合模块。WiFi符合802.11a/b/g/n无线标准&#xff0c;蓝牙支持低功耗蓝牙V4.2/V5.0 BLE/V2.1和EDR&#xff0c;WiFi部分的接口是UART&#xff0c;蓝牙部分是UART/PCM 接口。模…

深入解析浏览器Cookie(图文码教学)

深入解析浏览器Cookie 前言一、什么是 Cookie?二、Cookie的特点二、如何创建 Cookie&#xff1f;三、服务器如何获取 Cookie四、Cookie 值的修改4.1 方案一4.2 方案二 五、浏览器查看 Cookie六、Cookie 生命控制七、Cookie 有效路径 Path 的设置八、案例&#xff1a;Cookie 练…

经典常谈思维导图怎么制作?手把手教你制作

经典常谈思维导图怎么制作&#xff1f;创建思维导图可以帮助我们更好地组织和整理信息&#xff0c;帮助我们更好地理解和记忆信息。它可以使我们更高效地学习和工作&#xff0c;并帮助我们更好地表达和分享我们的想法和想法。因此&#xff0c;制作思维导图是一种非常有用的技能…

回首2023上半年:成长、思考、感恩

文章目录 每日一句正能量前言一、目标达成情况总结二、工作和学习成果总结三、下半年规划总结四、个人想法 后记附录 每日一句正能量 做一个向日葵族&#xff0c;面对阳光&#xff0c;不自艾自怜&#xff0c;每天活出最灿烂的自己。曾经拥有的&#xff0c;不要忘记。不能得到的…