【lesson51】信号之信号处理

文章目录

  • 信号处理
  • 可重入函数
  • volatile
  • SIGCHLD信号

信号处理

信号产生之后,信号可能无法被立即处理,一般在合适的时候处理。
1.在合适的时候处理(是什么时候?
信号相关的数据字段都是在进程PCB内部。
而进程工作的状态一般如下:
在这里插入图片描述
在内核态中,从内核态返回用户态的时候,进行信号检测和处理!

我们为什么会进入内核态?
进行系统调用,有一些缺陷、陷阱等!

怎么进入内核态?
使用int 80----->一般内置在系统调用函数中。

在这里插入图片描述

在这里插入图片描述
每个进程都有1GB的内核地址空间给内核用,那么内核如何用?
内核也是在进程地址空间上下文中run的。

那么可以执行进程切换的代码吗
可以

进程凭什么有权利执行OS的系统接口代码呢?
凭的是我们处于内核态还是用户态!

CPU的寄存器有2套,一套可见,一套不可见自用!
自用寄存器CR3---->表示当前CPU的执行权限1.内核态 3.用户态
int 80---->从用户态进入内核态

2.信号处理的整个流程
为什么要从用户态进入内核态?
怎么从用户态进入内核态?

在这里插入图片描述

在这里插入图片描述
内核如何实现信号的捕捉
如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函 数,sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。 sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复main函数的上下文继续执行了。

信号操作
sigaction:
在这里插入图片描述
在这里插入图片描述
介绍函数
sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回- 1。signo是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体:

将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函 数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。

在这里插入图片描述

代码:
在这里插入图片描述
运行结果:
在这里插入图片描述
处理信号的时候,执行自定义动作,如果处理信号期间,有来了同样的信号呢?OS会如何处理?
结论
当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数,本章不详细解释这两个字段,有兴趣的同学可以在了解一下。
sa_flags:
在这里插入图片描述
验证上面结论:
代码:

#include <iostream>
#include <signal.h>
#include <unistd.h>

void showPending(sigset_t& pending)
{
    for(int sig = 1; sig <= 31; sig++)
    {
        if(sigismember(&pending,sig))
        {
            std::cout << "1";
        }
        else
        {
            std::cout << "0";
        }
    }

    std::cout << std::endl;
    
}
void handler(int signum)
{
    std::cout << "获取到一个信号: " << signum << std::endl;
    std::cout << "获取到一个信号: " << signum << std::endl;

    sigset_t pending;
    int cnt = 0;
    while(true)
    {
        sigpending(&pending);
        showPending(pending);
        if(cnt == 10)
        {
            break;
        }

        cnt++;
        sleep(1);
    }
}
int main()
{

    signal(2, SIG_DFL);
    struct sigaction act;
    struct sigaction oact;

    //初始化相关信号信息
    act.sa_flags = 0;
    sigemptyset(&act.sa_mask);
    act.sa_handler = handler;

    // 设置进当前调用进程的pcb中
    sigaction(2,&act,&oact);
    std::cout << "default action : " << (int)(oact.sa_handler) << std::endl;

    while (true)
        sleep(1);
    return 0;
}

运行结果:
在这里插入图片描述
所以验证了当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。

可重入函数

不可重入函数:不可重入函数,重入时会发生的问题
在这里插入图片描述
main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步 时候,因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了

像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。想一下,为什么两个不同的控制流程调用同一个函数,访问它的同一个局部变量或参数就不会造成错乱?

可重入函数和不可重入函数都是函数的一种特征,目前90%都是可重入函数。

如果一个函数符合以下条件之一则是不可重入的:
调用了malloc或free,因为malloc也是用全局链表来管理堆的。
调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

volatile

该关键字在C当中我们已经有所涉猎,今天我们站在信号的角度重新理解一下
我们看下面的代码:
在这里插入图片描述
运行代码:
在这里插入图片描述
在这里插入图片描述
这里我们发现进行正常退出。
但是如果我们把编译器的优化等级提升到最高呢?
在这里插入图片描述
在这里插入图片描述
运行代码:
在这里插入图片描述
我们发现进程一直死循环不会退出,但是我们不是更改了flag值吗?
因为编译器有时候会自动给我们进行代码,优化这样就不会去内存读取修改后的flag还是一直用之前的flag。
volatile字段就是让编译器不要优化这个flag,还是继续向内存读取flag。

优化情况下,键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 ,但是 while 条件依旧满足,进程继续运行!但是很明显flag肯定已经被修改了,但是为何循环依旧执行?很明显, while 循环检查的flag,并不是内存中最新的flag,这就存在了数据二异性的问题。 while 检测的flag其实已经因为优化,被放在了CPU寄存器当中。如何解决呢?很明显需要 volatile

在这里插入图片描述
运行代码:
在这里插入图片描述
volatile 作用:保持内存的可见性,告知编译器,被该关键字修饰的变量,不允许被优化,对该变量的任何操作,都必须在真实的内存中进行操作

SIGCHLD信号

之前讲过用wait和waitpid函数清理僵尸进程,父进程可以阻塞等待子进程结束,也可以非阻塞地查询是否有子进程结束等待清理(也就是轮询的方式)。采用第一种方式,父进程阻塞了就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一 下,程序实现复杂。

其实子进程在终止时会给父进程发SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自 定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程 终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可。

事实上,由于UNIX的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调 用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略 通常是没有区别的,但这是一个特例。此方法对于Linux可用,但不保证在其它UNIX系统上都可 用。请编写程序验证这样做不会产生僵尸进程。

子进程退出会向父进程发送SIGCHLD信号。
证明:
在这里插入图片描述
运行结果:
在这里插入图片描述
在这里插入图片描述

如果父进程不关心子进程的任何退出情况,直接设置默认动作为SIG_IGN
在这里插入图片描述

那么接下来我们父进程就可以不用阻塞式或者非阻塞式的等待进程了,可以执行自己的代码,等待收到信号了,再去处理进程。
demo代码

#include <iostream>
#include <signal.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <wait.h>

void handler(int sig)
{
    pid_t id;
    while ((id = waitpid(-1, NULL, WNOHANG)) > 0)
    {
        printf("wait child success: %d\n", id);
    }
    printf("child is quit! %d\n", getpid());
}
int main()
{
    signal(SIGCHLD, handler);
    pid_t cid;
    if ((cid = fork()) == 0)
    { // child
        printf("child : %d\n", getpid());
        sleep(3);
        exit(1);
    }
    while (1)
    {
        printf("father proc is doing some thing!\n");
        sleep(1);
    }
    return 0;
}

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/384908.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【动态规划】【数学】【C++算法】1449. 数位成本和为目标值的最大数字

作者推荐 【深度优先搜索】【树】【图论】2973. 树中每个节点放置的金币数目 本文涉及知识点 动态规划汇总 LeetCode1449. 数位成本和为目标值的最大数字 给你一个整数数组 cost 和一个整数 target 。请你返回满足如下规则可以得到的 最大 整数&#xff1a; 给当前结果添加…

《UE5_C++多人TPS完整教程》学习笔记1 ——《P2 关于本课程(About This Course)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P2 关于本课程&#xff08;About This Course&#xff09;》 的学习笔记&#xff0c;该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版&#xff0c;UP主&#xff08;也是译者&…

使用 Windows 11/10 上的最佳 PDF 转 Word 转换器释放 PDF 的潜力

毫无疑问&#xff0c;PDF 是最好的文档格式之一&#xff0c;但就像其他格式一样&#xff0c;有时它们确实会带来一些限制。例如&#xff0c;在某些情况下&#xff0c;您可能想要将 PDF 转换为 Word。在这种情况下&#xff0c;您始终可以借助 PDF 到 Word 转换器的帮助。 为了说…

ChatGPT高效提问—prompt实践(生成VBA)

ChatGPT高效提问—prompt实践&#xff08;生成VBA&#xff09; 2. 生成VBA函数操作Excel ​ 当前Excel表格数据无背景颜色&#xff0c;区分不明显。假如我们想美化数据展示效果&#xff0c;把标题行设置为浅蓝色&#xff0c;其余奇数行设置为橙色&#xff0c;该怎么操作呢&am…

Spark MLlib

目录 一、Spark MLlib简介 &#xff08;一&#xff09;什么是机器学习 &#xff08;二&#xff09;基于大数据的机器学习 &#xff08;三&#xff09;Spark机器学习库MLlib 二、机器学习流水线 &#xff08;一&#xff09;机器学习流水线概念 &#xff08;二&#xff09…

【Java程序设计】【C00249】基于Springboot的私人健身与教练预约管理系统(有论文)

基于Springboot的私人健身与教练预约管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的私人健身与教练预约管理系统 本系统分为系统功能模块、管理员功能模块、教练功能模块以及用户功能模块。 系统功能模…

小白速成法:剖析一个Android项目以快速上手

这是一个基于Tasmota的设备、用MQTT协议来通信控制的安卓应用程序。支持ON/OFF命令插座和基本的RGB LED控制。 源码点击此处 只需要关注SmartController-main\app\src的代码 项目解压之后如图 只需要关注“app”文件夹里的东西即可&#xff0c;“gradle”是配置文件&#xf…

【国产MCU】-CH32V307-基本定时器(BCTM)

基本定时器(BCTM) 文章目录 基本定时器(BCTM)1、基本定时器(BCTM)介绍2、基本定时器驱动API介绍3、基本定时器使用实例CH32V307的基本定时器模块包含一个16 位可自动重装的定时器(TIM6和TIM7),用于计数和在更新新事件产生中断或DMA 请求。 本文将详细介绍如何使用CH32…

服务治理中间件-Eureka

目录 简介 搭建Eureka服务 注册服务到Eureka 简介 Eureka是Spring团队开发的服务治理中间件&#xff0c;可以轻松在项目中&#xff0c;实现服务的注册与发现&#xff0c;相比于阿里巴巴的Nacos、Apache基金会的Zookeeper&#xff0c;更加契合Spring项目&#xff0c;缺点就是…

unity 点击事件

目录 点击按钮&#xff0c;显示图片功能教程 第1步添加ui button&#xff0c;添加ui RawImage 第2步 添加脚本&#xff1a; 第3步&#xff0c;把脚本拖拽到button&#xff0c;点击button&#xff0c;设置脚本的变量&#xff0c; GameObject添加 Component组件 点击按钮&am…

在程序中使用日志功能

在应用中&#xff0c;需要记录程序运行过程中的一些关键信息以及异常输出等。这些信息用来排查程序故障或者其他用途。 日志模块可以自己实现或者是借用第三方库&#xff0c;之前写过一个类似的使用Qt的打印重定向将打印输出到文件&#xff1a;Qt将打印信息输出到文件_qt log输…

随机过程及应用学习笔记(二)随机过程的基本概念

随机过程论就是研究随时间变化的动态系统中随机现象的统计规律的一门数学学科。 目录 前言 一、随机过程的定义及分类 1、定义 2、分类 二、随机过程的分布及其数字特征 1、分布函数 2、数字特征 均值函数和方差函数 协方差函数和相关函数 3、互协方差函数与互相关函…

java微服务面试篇

目录 目录 SpringCloud Spring Cloud 的5大组件 服务注册 Eureka Nacos Eureka和Nacos的对比 负载均衡 负载均衡流程 Ribbon负载均衡策略 自定义负载均衡策略 熔断、降级 服务雪崩 服务降级 服务熔断 服务监控 为什么需要监控 服务监控的组件 skywalking 业务…

【MySQL进阶之路】详解执行计划 type 列

欢迎关注公众号&#xff08;通过文章导读关注&#xff1a;【11来了】&#xff09;&#xff0c;及时收到 AI 前沿项目工具及新技术的推送&#xff01; 在我后台回复 「资料」 可领取编程高频电子书&#xff01; 在我后台回复「面试」可领取硬核面试笔记&#xff01; 文章导读地址…

BUUCTF-Real-[Jupyter]notebook-rce

1、简介 Jupyter Notebook&#xff08;此前被称为 IPython notebook&#xff09;是一个交互式笔记本&#xff0c;支持运行 40 多种编程语言。 如果管理员未为Jupyter Notebook配置密码&#xff0c;将导致未授权访问漏洞&#xff0c;游客可在其中创建一个console并执行任意Pytho…

python - 模块使用详解

前言 Python有非常强大的第三方库&#xff0c;也有非常多的内置模块帮助开发人员实现某些功能&#xff0c;无需开发人员自己造轮子。本文介绍Python的模块。 什么是模块 模块简单来说就是一系列功能的集合体&#xff0c;如果将程序的开发比喻成拼图&#xff0c;模块就是各种…

C++STL速查手册

本文参考cppreference&#xff0c;整理了一些常用的STL容器及其内置函数与算法&#xff0c;方便查用。 CSTL速查手册 什么是STL&#xff1f;STL模板 什么是STL&#xff1f; 在C中&#xff0c;STL 是指标准模板库&#xff08;Standard Template Library&#xff09;。STL 是 C 标…

CSS之盒模型

盒模型概念 浏览器盒模型&#xff08;Box Model&#xff09;是CSS中的基本概念&#xff0c;它描述了元素在布局过程中如何占据空间。盒模型由内容&#xff08;content&#xff09;、内边距&#xff08;padding&#xff09;、边框&#xff08;border&#xff09;、和外边距&…

mysql Day05

sql性能分析 sql执行频率 show global status like Com_______ 慢查询日志 执行时间超过10秒的sql语句 profile详情 show profiles帮助我们了解时间都耗费到哪里了 #查看每一条sql的耗时情况 show profiles#查看指定query_id的sql语句各个阶段的耗时情况 show profile fo…

【项目日记(九)】项目整体测试,优化以及缺陷分析

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:项目日记-高并发内存池⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你做项目   &#x1f51d;&#x1f51d; 开发环境: Visual Studio 2022 项目日…