MogaNet实战:使用 MogaNet实现图像分类任务(二)

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整策略
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 测试
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
MogaNet实战:使用MogaNet实现图像分类任务(一)
前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实验效果等内容。接下来,这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.moganet import moganet_xtiny
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':
    #创建保存模型的文件夹
    file_dir = 'checkpoints/MogaNet/'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir,exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    model_lr = 3e-4
    BATCH_SIZE = 16
    EPOCHS = 300
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    use_amp = True  # 是否使用混合精度
    use_dp = True #是否开启dp方式的多卡训练
    classes = 12
    resume =None
    CLIP_GRAD = 5.0
    Best_ACC = 0 #记录最高得分
    use_ema=True
    model_ema_decay=0.9998
    start_epoch=1
    seed=1
    seed_everything(seed)

创建一个名为 ‘checkpoints/MogaNet/’ 的文件夹,用于保存训练过程中的模型。如果该文件夹已经存在,则不会再次创建,否则会创建该文件夹。

设置训练模型的全局参数,包括学习率、批次大小、训练轮数、设备选择(是否使用 GPU)、是否使用混合精度、是否开启数据并行等。

注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema

model_ema_decay:
start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

  file_dir = 'checkpoints/MogaNet/'

这是存放MogaNet模型的路径。

图像预处理与增强

   # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
    ])
    
    mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的FlashInternImage模型输入是224×224的大小,所以要Resize为224×224。

 mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

定义了一个 Mixup 函数。Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。

读取数据

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE,num_workers=8, shuffle=True,drop_last=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代,pin_memory设置为True,可以加快运行速度,num_workers多进程加载图像,不要超过CPU 的核数。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPU
    criterion_train = SoftTargetCrossEntropy()
    criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

    #设置模型
    model_ft = vim_tiny_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_rope_also_residual_with_cls_token(pretrained=True)
    num_freature=model_ft.head.in_features
    model_ft.head=nn.Linear(num_freature,classes)
    if resume:
        model=torch.load(resume)
        print(model['state_dict'].keys())
        model_ft.load_state_dict(model['state_dict'])
        Best_ACC=model['Best_ACC']
        start_epoch=model['epoch']+1
    model_ft.to(DEVICE)
    print(model_ft)
  • 设置模型为moganet_xtiny,获取分类模块的in_features,然后,修改为数据集的类别,也就是classes。
  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch。
  • 如果模型输出是classes的长度,则表示修改正确了。

在这里插入图片描述

设置优化器和学习率调整策略

   # 选择简单暴力的Adam优化器,学习率调低
   optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
   cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()
    if torch.cuda.device_count() > 1 and use_dp:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model_ft = torch.nn.DataParallel(model_ft)
    if use_ema:
        model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device=DEVICE,
            resume=resume)
    else:
        model_ema=None

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):
    model.train()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True)
        samples, targets = mixup_fn(data, target)
        output = model(samples)
        optimizer.zero_grad()
        if use_amp:
            with torch.cuda.amp.autocast():
                loss = torch.nan_to_num(criterion_train(output, targets))
            scaler.scale(loss).backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            # Unscales gradients and calls
            # or skips optimizer.step()
            scaler.step(optimizer)
            # Updates the scale for next iteration
            scaler.update()
        else:
            loss = criterion_train(output, targets)
            loss.backward()
            # torch.nn.utils.clip_grad_norm_(models.parameters(), CLIP_GRAD)
            optimizer.step()

        if model_ema is not None:
            model_ema.update(model)
        torch.cuda.synchronize()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        loss_meter.update(loss.item(), target.size(0))
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
    ave_loss =loss_meter.avg
    acc = acc1_meter.avg
    print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
    return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    val_list = []
    pred_list = []

    for data, target in test_loader:
        for t in target:
            val_list.append(t.data.item())
        data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)
        output = model(data)
        loss = criterion_val(output, target)
        _, pred = torch.max(output.data, 1)
        for p in pred:
            pred_list.append(p.data.item())
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
    acc = acc1_meter.avg
    print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
        loss_meter.avg,  acc,  acc5_meter.avg))
    if acc > Best_ACC:
        if isinstance(model, torch.nn.DataParallel):
            torch.save(model.module, file_dir + '/' + 'best.pth')
        else:
            torch.save(model, file_dir + '/' + 'best.pth')
        Best_ACC = acc
    if isinstance(model, torch.nn.DataParallel):
        state = {

            'epoch': epoch,
            'state_dict': model.module.state_dict(),
            'Best_ACC':Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.module.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    else:
        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证
    is_set_lr = False
    log_dir = {}
    train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
    if resume and os.path.isfile(file_dir+"result.json"):
        with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
            logs = json.load(file)
            train_acc_list = logs['train_acc']
            train_loss_list = logs['train_loss']
            val_acc_list = logs['val_acc']
            val_loss_list = logs['val_loss']
            epoch_list = logs['epoch_list']
    for epoch in range(start_epoch, EPOCHS + 1):
        epoch_list.append(epoch)
        log_dir['epoch_list'] = epoch_list
        train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
        train_loss_list.append(train_loss)
        train_acc_list.append(train_acc)
        log_dir['train_acc'] = train_acc_list
        log_dir['train_loss'] = train_loss_list
        if use_ema:
            val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
        else:
            val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
        val_loss_list.append(val_loss)
        val_acc_list.append(val_acc)
        log_dir['val_acc'] = val_acc_list
        log_dir['val_loss'] = val_loss_list
        log_dir['best_acc'] = Best_ACC
        with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(log_dir))
        print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
        if epoch < 600:
            cosine_schedule.step()
        else:
            if not is_set_lr:
                for param_group in optimizer.param_groups:
                    param_group["lr"] = 1e-6
                    is_set_lr = True
        fig = plt.figure(1)
        plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
        # 显示图例
        plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
        plt.legend(["Train Loss", "Val Loss"], loc="upper right")
        plt.xlabel(u'epoch')
        plt.ylabel(u'loss')
        plt.title('Model Loss ')
        plt.savefig(file_dir + "/loss.png")
        plt.close(1)
        fig2 = plt.figure(2)
        plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
        plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
        plt.legend(["Train Acc", "Val Acc"], loc="lower right")
        plt.title("Model Acc")
        plt.ylabel("acc")
        plt.xlabel("epoch")
        plt.savefig(file_dir + "/acc.png")
        plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

MogaNet测试结果:
请添加图片描述
请添加图片描述

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

MogaNet_Demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/MogaNet/best.pth')
model.eval()
model.to(DEVICE)
print(model)

path = 'test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))


测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 torch.load加载model,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

完整的代码

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/88829466

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/384795.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

「Linux」软件安装

MySQL5.7在CentOS安装 安装 配置yum仓库 更新密钥&#xff1a;rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022安装MySQL yum库&#xff1a;rpm -Uvh http://repo.mysql.com//mysql57-community-release-el7-7.noarch.rpm使用yum安装MySQL&#xff1a;yum -y in…

接口测试 05 -- 接口加密处理

前言 实际工作当中,涉及到接口加密时,每一个公司加密方式都是不一样的。 1. 遇到接口加密的解决方法: ① 如果是一些常用的加密,可以通过 (第三方)工具或者代码去解决。 ② 如果是开发自己封装的加密方法,核心逻辑外人是无法知道的,最好的方式让开发去协助你。提供接口去…

ChinaXiv:中科院科技论文预发布平台

文章目录 Main彩蛋 Main 主页&#xff1a;https://chinaxiv.org/home.htm 彩蛋

python 笔记:shapely(形状篇)

主要是点&#xff08;point&#xff09;、线&#xff08;linestring&#xff09;、面&#xff08;surface&#xff09; 1 基本方法和属性 object.area 返回对象的面积&#xff08;浮点数&#xff09; object.bounds 返回一个&#xff08;minx, miny, maxx, maxy&#xff09;元…

发廊理发店微信小程序展示下单前端静态模板源码

模板描述&#xff1a;剪发小程序前端源码&#xff0c;一共五个页面&#xff0c;包括店铺、理发师、订单、我的等页面 注&#xff1a;该源码是前端静态模板源码&#xff0c;没有后台和API接口

【Linux进阶之路】网络——“?“(上)

文章目录 一、历史发展1. 独立形态2. 互联形态3. 局域网 二、网络协议1.OSI七层协议2.TCP/IP四&#xff08;五&#xff09;层模型 三、网络通信1.封装与解包2.数据的传输1.局域网2.广域网 总结尾序 本篇文章的目的是带大家初步认识网络&#xff0c;为后面的网络编程打下基础&am…

js基础(2)

对象 object也是js的一种数据类型 其静态特征可以用基本数据类型表示 动态行为可以用函数表示 语法&#xff1a; 增删改查 查&#xff1a;对象.属性 改: 对象.属性值 增&#xff1a;对象.新属性名新值 删&#xff1a;delete 对象.属性名 查的另一种写法&#xff1a; 对…

2024.2.3 作业

1、实现单向循环链表的头插头删尾插尾删 #include<stdio.h> #include<string.h> #include<stdlib.h> typedef int datatype; typedef struct node {//数据域int data;//指针域struct node *next; }*Linklist; Linklist create() {Linklist s(Linklist)mallo…

windows配置开机自启动软件或脚本

文章目录 windows配置开机自启动软件或脚本配置自启动目录开机运行的脚本调试开机自启动脚本配置守护进程(包装成自启动服务)使用任务计划程序FAQ 开机自动运行脚本示例 windows配置开机自启动软件或脚本 配置自启动目录 在Windows中添加开机自动运行的软件&#xff0c;可以按…

使用R语言建立回归模型并分割训练集和测试集

通过简单的回归实例&#xff0c;可以说明数据分割为训练集和测试集的必要性。以下先建立示例数据: set.seed(123) #设置随机种子 x <- rnorm(100, 2, 1) # 生成100个正态分布的随机数&#xff0c;均值为2&#xff0c;标准差为1 y exp(x) rnorm(5, 0, 2) # 生成一个新的变…

SQLyog安装配置(注册码)连接MySQL

下载资源 博主给你打包好了安装包&#xff0c;在网盘里&#xff0c;只有几Mb&#xff0c;防止你下载到钓鱼软件 快说谢谢博主&#xff08;然后心甘情愿的点个赞~&#x1f60a;&#xff09; SQLyog.zip 安装流程 ①下载好压缩包后并解压 ②打开文件夹&#xff0c;双击安装包 ③…

docker常用容器命令

首先说下容器&#xff1a; 它是指当docker运行镜像时&#xff0c;创建了一个隔离环境&#xff0c;称之为 容器。 这种方式优点&#xff1a;可以开启多个服务&#xff0c;服务之前是互相隔离的&#xff08;比如&#xff1a;在一台服务器上可以开启多个mysql&#xff0c;可以是…

【AI之路】使用RWKV-Runner启动大模型,彻底实现大模型自由

文章目录 前言一、RWKV-Runner是什么&#xff1f;RWKV-Runner是一个大语言模型的启动平台RWKV-Runner官方功能介绍 二、使用步骤1. 下载文件 总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; ChatGPT的横空出世&#xff0c;打开了AI的大门&#xff…

【通讯录案例-保存开关状态 Objective-C语言】

一、接下来,我们要实现一个什么功能呢,在这个,我们的“通讯录”里边儿, 1.我们有两个开关,“记住密码”、“自动登录”、两个开关, 如果我们点击“记住密码”, 如果我们点击“记住密码”,然后呢,我把这个程序关了,我下一次再打开这个程序的时候,这个用户名和密码,…

Verilog刷题笔记30

题目&#xff1a; You are provided with a BCD one-digit adder named bcd_fadd that adds two BCD digits and carry-in, and produces a sum and carry-out. 解题&#xff1a; module top_module( input [399:0] a, b,input cin,output cout,output [399:0] sum );reg [99…

HTTP基本概念-HTTP 是什么?

资料来源 : 小林coding 小林官方网站 : 小林coding (xiaolincoding.com) HTTP 是什么? HTTP 是超文本传输协议&#xff0c;也就是HyperText Transfer Protocol。 能否详细解释「超文本传输协议」? HTTP 的名字「超文本协议传输」&#xff0c;它可以拆成三个部分: 超文本传输…

ruoyi-nbcio中xxl-job的安装与使用

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a; http://122.227.135.243:9666 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbach…

【python】Fraction类详解及生成分数四则运算“试卷”

文章目录 一、前言实验所需的库终端指令Fraction类1. Fraction(numerator, denominator)&#xff1a;2. Fraction(numerator)3. Fraction()4. 分数作参数5. 负分数作参数6. 字符串作参数7. 小数作参数8. 科学计数法9. 浮点数作参数10. 浮点数精度问题11. Decimal对象作参数 二、…

力扣刷题之旅:高阶篇(三)—— 图算法的挑战

力扣&#xff08;LeetCode&#xff09;是一个在线编程平台&#xff0c;主要用于帮助程序员提升算法和数据结构方面的能力。以下是一些力扣上的入门题目&#xff0c;以及它们的解题代码。 --点击进入刷题地址 引言 在算法世界的深处&#xff0c;图算法犹如一座高峰&#xff…

基于大语言模型的AI Agents

代理&#xff08;Agent&#xff09;指能自主感知环境并采取行动实现目标的智能体。基于大语言模型&#xff08;LLM&#xff09;的 AI Agent 利用 LLM 进行记忆检索、决策推理和行动顺序选择等&#xff0c;把Agent的智能程度提升到了新的高度。LLM驱动的Agent具体是怎么做的呢&a…