ElasticSearch级查询Query DSL上

目录

ES高级查询Query DSL

match_all

返回源数据_source

返回指定条数size

分页查询from&size

指定字段排序sort

术语级别查询

Term query术语查询

Terms Query多术语查询

exists query

ids query

range query范围查询

prefix query前缀查询

wildcard query通配符查询

fuzzy query模糊查询


ES高级查询Query DSL

       ES中提供了一种强大的检索数据方式,这种检索方式称之为Query DSL(Domain Specified Language 领域专用语言),Query DSL是利用Rest API传递JSON格式的请求体(RequestBody)数据与ES进行交互,这种方式的丰富查询语法让ES检索变得更强大更简洁。

语法:

GET /es_db/_doc/_search {json请求体数据}
可以简化为下面写法
GET /es_db/_search {json请求体数据}

示例

#无条件查询,默认返回10条数据
GET /user/_search
{
    "query":{
        "match_all":{}
    }
}

took:花费的时间

total.value:符合条件的总文档

hits:结果集,默认前10个文档

_index:索引名

_id:文档的id

_score:相关度评分

source:文档原生信息

示例数据

#指定ik分词器
PUT /user
{
  "settings" : {
      "index" : {
          "analysis.analyzer.default.type": "ik_max_word"
      }
  }
}

# 创建文档,指定id
PUT /user/_doc/1
{
"name": "张三",
"sex": 1,
"age": 25,
"address": "北京",
"remark": "java"
}
PUT /user/_doc/2
{
"name": "李四",
"sex": 1,
"age": 28,
"address": "南京",
"remark": "java"
}

PUT /user/_doc/3
{
"name": "王五",
"sex": 0,
"age": 26,
"address": "广州白云山",
"remark": "php"
}

PUT /user/_doc/4
{
"name": "赵六",
"sex": 0,
"age": 22,
"address": "长沙",
"remark": "python"
}

PUT /user/_doc/5
{
"name": "张龙",
"sex": 0,
"age": 19,
"address": "天津",
"remark": "java"
}    
    
PUT /user/_doc/6
{
"name": "赵虎",
"sex": 1,
"age": 32,
"address": "长沙",
"remark": "java"
}    

PUT /user/_doc/7
{
"name": "李虎",
"sex": 1,
"age": 32,
"address": "广州",
"remark": "java"
}

PUT /user/_doc/8
{
"name": "张星",
"sex": 1,
"age": 32,
"address": "武汉",
"remark": "golang"
}

match_all

使用match_all,匹配所有文档,默认只会返回10条数据。

原因:_search查询默认采用的是分页查询,每页记录数size的默认值为10。如果想显示更多数据,指定size。

GET /user/_search
等同于
GET /user/_search
{
"query":{
"match_all":{}
}
}

返回源数据_source

# 返回指定字段
GET /user/_search
{
  "query": {
    "match_all": {}
  },
  "_source": ["name","address"]
}

#在查询中过滤
#不查看源数据,仅查看元字段
{
  "_source": false,
  "query": {
    ...
  } 
}

#只看以obj.开头的字段
{
  "_source": "obj.*",
  "query": {
    ...
  } 
}

返回指定条数size

size 关键字:指定查询结果中返回指定条数。默认返回值10条。

GET /user/_search
{
  "query": {
    "match_all": {}
  },
  "size": 100
}

分页查询from&size

size:显示应该返回的结果数量,默认是 10

from:显示应该跳过的初始结果数量,默认是 0

from 关键字用来指定起始返回位置,和size关键字连用可实现分页效果

GET /user/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0,
  "size": 5  
}

指定字段排序sort

注意:会让得分失效

GET /user/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "age": "desc"
    }
  ]
}

#排序,分页
GET /user/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "age": "desc"
    }
  ],
  "from": 10,
  "size": 5
}

术语级别查询

       术语级别查询(Term-Level Queries)指的是搜索内容不经过文本分析直接用于文本匹配,这个过程类似于数据库的SQL查询,搜索的对象大多是索引的非text类型字段。Elasticsearch 中的一些术语级别查询示例包括 term、terms 和 range 查询。

Term query术语查询

       术语查询直接返回包含搜索内容的文档,常用来查询索引中某个类型为keyword的文本字段,类似于SQL的“=”查询,使用十分普遍。

       注意:最好不要在term查询的字段中使用text字段,因为text字段会被分词,这样做既没有意义,还很有可能什么也查不到。

# 对bool,日期,数字,结构化的文本可以利用term做精确匹配
# term 精确匹配
GET /user/_search
{
  "query": {
    "term": {
      "age": {
        "value": 28
      }
    }
  }
}



# 采用term精确查询, 查询字段映射类型为keyword
GET /user/_search
{
  "query":{
    "term": {
      "address.keyword": {
        "value": "广州"
      }
    }
  }
}

在ES中,Term查询,对输入不做分词。会将输入作为一个整体,在倒排索引中查找准确的词项,并且使用相关度算分公式为每个包含该词项的文档进行相关度算分。

可以通过 Constant Score 将查询转换成一个 Filtering,避免算分,并利用缓存,提高性能。

将Query 转成 Filter,忽略TF-IDF计算,避免相关性算分的开销,Filter可以有效利用缓存。

GET /user/_search
{
  "query": {
    "constant_score": {
      "filter": {
        "term": {
          "address.keyword": "广州"
        }
      }
    }
  }
}

term处理多值字段时,term查询是包含,不是等于。

POST /employee/_bulk
{"index":{"_id":1}}
{"name":"小明","interest":["跑步","篮球"]}
{"index":{"_id":2}}
{"name":"小红","interest":["跳舞","画画"]}
{"index":{"_id":3}}
{"name":"小丽","interest":["跳舞","唱歌","跑步"]}

POST /employee/_search
{
  "query": {
    "term": {
      "interest.keyword": {
        "value": "跑步"
      }
    }
  }
}

Terms Query多术语查询

       Terms query用于在指定字段上匹配多个词项(terms)。它会精确匹配指定字段中包含的任何一个词项。

POST /user/_search
{
  "query": {
    "terms": {
      "remark.keyword": ["java", "php"]
    }
  }
}

exists query

在Elasticsearch中可以使用exists进行查询,以判断文档中是否存在对应的字段。

#查询索引库中存在remarks字段的文档数据
GET /user/_search
{
  "query": {
    "exists": 
    {
      "field": "remark"
    }
  }
}

ids query

ids 关键字 : 值为数组类型,用来根据一组id获取多个对应的文档。

GET /user/_search
{
  "query": {
    "ids": {
      "values": [1,2]
    }
  }
}

range query范围查询

  • range:范围关键字
  • gte 大于等于
  • lte  小于等于
  • gt 大于
  • lt 小于
  • now 当前时
POST /user/_search
{
  "query": {
    "range": {
      "age": {
        "gte": 25,
        "lte": 28
      }
    }
  }
}

#日期范围比较
DELETE /product
POST /product/_bulk
{"index":{"_id":1}}
{"price":100,"date":"2021-01-01","productId":"XHDK-1293"}
{"index":{"_id":2}}
{"price":200,"date":"2022-01-01","productId":"KDKE-5421"}

GET /product/_mapping

GET /product/_search
{
  "query": {
    "range": {
      "date": {
        "gte": "now-2y"
      }
    }
  }
}

prefix query前缀查询

它会对分词后的term进行前缀搜索。

prefix的原理:需要遍历所有倒排索引,并比较每个term是否以所指定的前缀开头。

GET /user/_search
{
  "query": {
    "prefix": {
      "address": {
        "value": "广州"
      }
    }
  }
}

wildcard query通配符查询

通配符查询:工作原理和prefix相同,只不过它不是只比较开头,它能支持更为复杂的匹配模式。

GET /user/_search
{
  "query": {
    "wildcard": {
      "address": {
        "value": "*京*"
      }
    }
  }
}

fuzzy query模糊查询

在实际的搜索中,我们有时候会打错字,从而导致搜索不到。在Elasticsearch中,我们可以使用fuzziness属性来进行模糊查询,从而达到搜索有错别字的情形。

fuzzy 查询会用到两个很重要的参数,fuzziness,prefix_length

1. fuzziness(模糊度)fuzziness参数指定了允许的编辑距离(Levenshtein距离)。编辑距离是指在两个字符串之间,从一个字符串转换到另一个字符串所需的最小编辑操作数(插入、删除、替换)。在Fuzzy查询中,编辑距离表示允许的最大差异数。较大的编辑距离意味着更宽松的匹配条件,允许更多的不匹配。常见的编辑距离值包括0、1、2,其中0表示精确匹配,1表示允许一个字符的差异,2表示允许两个字符的差异,以此类推。

2. prefix_length(前缀长度)prefix_length参数用于控制在执行Fuzzy查询时要忽略的术语的前缀长度。在实际文本中,可能存在大量共享前缀的术语,而这些前缀不应该影响Fuzzy匹配。通过设置prefix_length参数,你可以指定要忽略的前缀长度,以便更精确地匹配剩余的部分。较大的前缀长度可以提高查询性能,因为它减少了需要比较的字符数。

GET /user/_search
{
  "query": {
    "fuzzy": {
      "address": {
        "value": "呗京",
        "fuzziness": 1    
      }
    }
  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/384559.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

「计算机网络」数据链路层

数据链路层的地位:网络中的主机、路由器等都必须实现数据链路层信道类型 点对点信道:使用一对一的点对点通信方式广播信道 使用一对多的广播通信方式必须使用专用的共享信道协议来协调这些主机的数据发送 使用点对点信道的数据链路层 数据链路和帧 链…

ansible shell模块 可以用来使用shell 命令 支持管道符 shell 模块和 command 模块的区别

这里写目录标题 说明shell模块用法shell 模块和 command 模块的区别 说明 shell模块可以在远程主机上调用shell解释器运行命令,支持shell的各种功能,例如管道等 shell模块用法 ansible slave -m shell -a cat /etc/passwd | grep root # 可以使用管道…

比特币突然大涨

作者:秦晋 2月9日,除夕夜,比特币突然大涨,最高涨至48219美元,涨幅超6%。据CNBC报道,本周比特币已经上涨10.76%,创下自12月8日以来的最佳的一周。本周ETH上涨8.46%,成为自1月12日以来…

蓝桥杯-X图形

问题描述 给定一个字母矩阵。一个 X 图形由中心点和由中心点向四个 45度斜线方向引出的直线段组成,四条线段的长度相同,而且四条线段上的字母和中心点的字母相同。 一个 X 图形可以使用三个整数 r,c,L 来描述,其中 r,c 表示中心点位于第 r 行…

【Java程序设计】【C00261】基于Springboot的休闲娱乐代理售票系统(有论文)

基于Springboot的休闲娱乐代理售票系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的休闲娱乐代理售票系统 本系统分为系统功能模块、管理员功能模块以及用户功能模块。 系统功能模块:休闲娱乐代理…

视频讲解:优化柱状图

你好,我是郭震 AI数据可视化 第三集:美化柱状图,完整视频如下所示: 美化后效果前后对比,前: 后: 附完整案例源码: util.py文件 import platformdef get_os():os_name platform.syst…

探索Redis特殊数据结构:Geospatial(地理位置)在实际中的应用

一、概述 Redis官方提供了多种数据类型,除了常见的String、Hash、List、Set、zSet之外,还包括Stream、Geospatial、Bitmaps、Bitfields、Probabilistic(HyperLogLog、Bloom filter、Cuckoo filter、t-digest、Top-K、Count-min sketch、Confi…

【开源】JAVA+Vue.js实现天然气工程业务管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、使用角色3.1 施工人员3.2 管理员 四、数据库设计4.1 用户表4.2 分公司表4.3 角色表4.4 数据字典表4.5 工程项目表4.6 使用材料表4.7 使用材料领用表4.8 整体E-R图 五、系统展示六、核心代码6.1 查询工程项目6.2 工程物资…

three.js 细一万倍教程 从入门到精通(一)

目录 一、three.js开发环境搭建 1.1、使用parcel搭建开发环境 1.2、使用three.js渲染第一个场景和物体 1.3、轨道控制器查看物体 二、three.js辅助设置 2.1、添加坐标轴辅助器 2.2、设置物体移动 2.3、物体的缩放与旋转 缩放 旋转 2.4、应用requestAnimationFrame …

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之ImageAnimator组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之ImageAnimator组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、ImageAnimator组件 提供分隔器组件,分隔不同内容块/内容元素…

一、DataX简介

DataX简介 一、什么是DataX二、DataX设计三、支持的数据源四、框架设计五、运行原理六、DataX和Sqoop对比 一、什么是DataX DataX是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、OD…

python -m SimpleHTTPServer mac报错

错误内容: Traceback (most recent call last):File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/runpy.py", line 174, in _run_module_as_main"__main__", fname, loader, pkg_name)File "/System/Libra…

【GameFramework框架内置模块】1、全局配置(Config)

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址 大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 【GameFramework框架】系列教程目录: https://blog.csdn.net/q7…

回归预测模型:MATLAB岭回归和Lasso回归

1. 岭回归和Lasso回归的基本原理 1.1 岭回归: 岭回归(Ridge Regression) 是一种用于共线性数据分析的技术。共线性指的是自变量之间存在高度相关关系。岭回归通过在损失函数中添加一个L2正则项( λ ∑ j 1 n β j 2 \lambda \s…

LeetCode662:二叉树最大宽度(二叉树非典型最大宽度,BFS层序遍历重编号)

题目 给你一棵二叉树的根节点 root ,返回树的 最大宽度 。 树的 最大宽度 是所有层中最大的 宽度 。 每一层的 宽度 被定义为该层最左和最右的非空节点(即,两个端点)之间的长度。将这个二叉树视作与满二叉树结构相同,…

雨云裸金属服务器

雨云服务器与裸金属服务器:云端与实体的完美交融 随着信息技术的迅猛发展,云服务已经成为企业和个人数据处理与存储的重要选择。其中,雨云服务器和裸金属服务器作为两种截然不同的服务形式,各自拥有独特的优势和应用场景。本文将深…

深度学习基础之《深度学习介绍》

一、深度学习与机器学习的区别 1、特征提取方面 机器学习:人工特征提取 分类算法 深度学习:没有人工特征提取,直接将特征值传进去 (1)机器学习的特征工程步骤是要靠手工完成的,而且需要大量领域专业知识…

[2-远程开发-01]idea远程连接开发

背景 因为本次的项目使用到一些网络相关的库只在linux可使用,项目本身也会在linux运行,而且如果在mac上进行开发的话,也涉及到部署的问题,而且也不能调试。 所以直接在本专栏第一篇的centos主机上进行开发,以远程连接…

三、案例 - MySQL数据迁移至ClickHouse

MySQL数据迁移至ClickHouse 一、生成测试数据表和数据1.在MySQL创建数据表和数据2.在ClickHouse创建数据表 二、生成模板文件1.模板文件内容2.模板文件参数详解2.1 全局设置2.2 数据读取(Reader)2.3 数据写入(Writer)2.4 性能设置…

协议-TCP协议-基础概念04-可能发生丢包的位置-linux配置项梳理(TCP连接的建立和断开、收发包过程)

可能发生丢包的位置-linux配置项梳理(TCP连接的建立和断开、收发包过程)-SYN Flood攻击和防御原理 参考来源: 极客时间-Linux性能优化实战 极客时间-Linux内核技术实战课 到底是哪里发生了丢包呢? Linux 的网络收发流程 从图中…