ChatGLM2-6B模型的win10测试笔记

ChatGLM2-6B介绍

介绍

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

  1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
  2. 更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。对于更长的上下文,我们发布了 ChatGLM2-6B-32K 模型。LongBench 的测评结果表明,在等量级的开源模型中,ChatGLM2-6B-32K 有着较为明显的竞争优势。
  3. 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
  4. 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后**亦允许免费商业使用**。

 代码托管的github:https://github.com/THUDM/ChatGLM-6B

先将代码下载到本地:

可以使用git :

git clone https://github.com/THUDM/ChatGLM2-6B

或者直接将GitHubzip包下载到本地,然后解压:

Multi-Query Attention 同时也降低了生成过程中 KV Cache 的显存占用,此外,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。因此,使用 6GB 显存的显卡进行 INT4 量化的推理时,初代的 ChatGLM-6B 模型最多能够生成 1119 个字符就会提示显存耗尽,而 ChatGLM2-6B 能够生成至少 8192 个字符。

量化等级编码 2048 长度的最小显存生成 8192 长度的最小显存
FP16 / BF1613.1 GB12.8 GB
INT88.2 GB8.1 GB
INT45.5 GB5.1 GB

然后去huggingface去下载模型文件:

https://huggingface.co/THUDM/chatglm2-6b   这个是FP16的站显存比较大   

我们选择INT-4:

https://huggingface.co/THUDM/chatglm2-6b-int4/tree/main

 然后将文件下载到本地,注意huggingface需要翻墙,现在国内无法登陆

下载zip解压到本地,然后创建一个model的文件,存放模型文件,这是我下载到本地的文件:

本地下载的模型文件 :

 

然后启动pycharm,导入这个项目

修改模型加载地址:打开web_demo.py文件

然后使用 pip 安装依赖:

pip install -r requirements.txt

其中 transformers 库版本推荐为 4.30.2torch 推荐使用 2.0 及以上的版本,以获得最佳的推理性能。

我是测试CPU运行,所以还要改一些地方:我这边选择的是chatglm2-6b-int4

CPU 部署

如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)

model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).float()

如果你的内存不足的话,也可以使用量化后的模型

model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4",trust_remote_code=True).float()

在 cpu 上运行量化后的模型需要安装 gcc 与 openmp。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 TDM-GCC 时勾选 openmp。 Windows 测试环境 gcc 版本为 TDM-GCC 10.3.0, Linux 为 gcc 11.3.0

 如果不安装  TDM-GCC 会报错:安装TDM-GCC如果不选openmp会报错:

TDM-GCC g++: error: libgomp.spec: No such file or directory

注意要勾选:TDM-GCC的安装过程

 安装好了。

运行还会报错:

Traceback (most recent call last):
  File "H:\Model\ChatGLM2-6B\web_demo.py", line 89, in <module>
    user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
AttributeError: 'Textbox' object has no attribute 'style'

解决:gradio安装3.40.0
pip install gradio==3.40.0 

 ChatGLM2-6B有三中方式实现交互:

web_demo.py 是 gradio测试网页版本

启动命令:python web_demo.py

web_demo2.py是命令启动基于 Streamlit 的网页版 demo

启动命令:

streamlit run web_demo2.py

cli_demo.py 是程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入 clear 可以清空对话历史,输入 stop 终止程序。

启动命令:

python cli_demo.py

然后运行python web_demo.py

然后可以开始对话了,但是特别的卡,主要是我的配置太低了

 

半天就刷出来这几个字,哈哈

测试 web_demo2.py

​ 

测试cli_demo.py

​ 

在安装显卡驱动的前提下(显卡驱动安装方法),输入:

nvidia-smi

​ 

可以看到该电脑可以支持的cuda版本最高是12.2,驱动是向下兼容的,所以cuda版本小于等于12.2的都可以安装上。

先安装CUDA的一个版本,我们先要安装cuda,cuda11.7是稳定版本,cuda12.1是预览版本,但是不稳定。所以我们安装CUDA11.7

官网:CUDA

 

cmd查看是否安装成功:

nvcc -V 

 

cudnn下载:cudnn官网 

GPU运行会提示错误:

AssertionError: Torch not compiled with CUDA enabled

主要是安装的torch不支持GPU导致的,我们先把torch卸载掉,然后下载和GPU相匹配的torch

pip uninstall torch

然后下载和torch对应支持的cuda版本

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 

 安装成功了,我们测试一下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/384077.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

服务异步通信

服务异步通信 消息队列在使用过程中&#xff0c;面临着很多实际问题需要思考&#xff1a; 1.消息可靠性 消息从发送&#xff0c;到消费者接收&#xff0c;会经理多个过程&#xff1a; 其中的每一步都可能导致消息丢失&#xff0c;常见的丢失原因包括&#xff1a; 发送时丢失…

app逆向-⽹络请求库okhttp3

文章目录 一、前言二、应用GET请求1、添加权限AndroidManifest.xml2、添加依赖okhttp33、编写界面文件activity_main.xml4、编写Activity代码5、效果 三、应用POST请求四、okhttp3请求拦截器 一、前言 OkHttp是由Square公司开发的用于Java和Android的开源HTTP客户端库。它被广…

leetcode链表相关题目

文章目录 1.移除链表元素方法1&#xff1a;方法2 2.合并两个有序链表3.链表的中间节点方法1方法2 4.反转单链表方法1方法2 5.分割链表6.链表中的倒数第k个节点方法1&#xff1a;方法2: 7.环形链表的约瑟夫问题8.链表的回文结构9.相交链表方法1方法2&#xff1a; 10.环形链表11.…

python接口自动化(三)--如何设计接口测试用例(详解)

在开始接口测试之前&#xff0c;我们来想一下&#xff0c;如何进行接口测试的准备工作。或者说&#xff0c;接口测试的流程是什么&#xff1f;有些人就很好奇&#xff0c;接口测试要流程干嘛&#xff1f;不就是拿着接口文档直接利用接口 测试工具测试嘛。其实&#xff0c;如果…

关于物理机ping不通虚拟机问题

方法一 设置虚拟机处于桥接状态即可&#xff1a;&#xff08;虚拟机->设置->网络适配器&#xff09;&#xff0c;选择完确定&#xff0c;重启虚拟机即可。 方法二 如果以上配置还是无法ping通&#xff1a;&#xff08;编辑->虚拟网络编辑器&#xff09; 首先查看主机网…

MySQL(基础)

第01章_数据库概述 1. 为什么要使用数据库 持久化(persistence)&#xff1a;把数据保存到可掉电式存储设备中以供之后使用。大多数情况下&#xff0c;特别是企业级应用&#xff0c;数据持久化意味着将内存中的数据保存到硬盘上加以”固化”&#xff0c;而持久化的实现过程大多…

C++11中的简化声明

auto 用于自动类型推断&#xff0c;显示定义变量&#xff1a; typeid typeid推导出来的是字符串&#xff0c;只能看不能用&#xff0c;通过打印来查看变量的类型&#xff0c;用法如上。 decltype 同样是用来自动推导类型&#xff0c;与auto的区别是&#xff0c;auto在定义时必…

DAY9.

1.选择芯片型号 2. 3. 4. 5. 6. 7.

MOCO动量编码

参考&#xff0c;推荐阅读 李沐论文精读系列三&#xff1a;MoCo、对比学习综述&#xff08;MoCov1/v2/v3、SimCLR v1/v2、DINO等&#xff09;_moco 对比学习-CSDN博客 背景 1. MOCO CVPR 2020 2. 对比学习&#xff1a;无监督学习的一种&#xff0c;重点学习同类实例中的共同…

第78讲 修改密码

系统管理实现 修改密码实现 前端 modifyPassword.vue&#xff1a; <template><el-card><el-formref"formRef":model"form":rules"rules"label-width"150px"><el-form-item label"用户名&#xff1a;&quo…

网络安全的今年:量子、生成人工智能以及 LLM 和密码

尽管世界总是难以预测&#xff0c;但网络安全的几个强劲趋势表明未来几个月的发展充满希望和令人担忧。有一点是肯定的&#xff1a;2024 年将是非常重要且有趣的一年。 近年来&#xff0c;人工智能&#xff08;AI&#xff09;以令人难以置信的速度发展&#xff0c;其在网络安全…

Vue源码系列讲解——虚拟DOM篇【四】(优化更新子节点)

目录 1. 前言 2. 优化策略介绍 3. 新前与旧前 4. 新后与旧后 5. 新后与旧前 6. 新前与旧后 7. 回到源码 8. 总结 1. 前言 在上一篇文章中&#xff0c;我们介绍了当新的VNode与旧的oldVNode都是元素节点并且都包含子节点时&#xff0c;Vue对子节点是 先外层循环newChil…

Illegal escape character in string literal

问题 笔者进行Android项目开发&#xff0c;编译器提示报错 Illegal escape character in string literal详细问题 textView.setText(“A\B”); 解决方案 修改代码为A\B textView.setText(“A\B”) 产生原因 问题产生的原因是在字符串字面值中使用了非法的转义字符。在…

1978-2023年全国国内生产总值、分产业分行业增加值相关指标数据

1978-2023年全国国内生产总值、分产业分行业增加值相关指标数据 1、时间&#xff1a;1978-2023年 2、指标&#xff1a;国内生产总值(亿元)、第一产业增加值(亿元)、第二产业增加值(亿元)、第三产业增加值(亿元)、人均国内生产总值(元)、国民总收入指数(上年100)、国内生产总值…

C++入门学习(二十七)跳转语句—continue语句

当在循环中遇到continue语句时&#xff0c;它会跳过当前迭代剩余的代码块&#xff0c;并立即开始下一次迭代。这意味着continue语句用于跳过循环中特定的执行步骤&#xff0c;而不是完全终止循环。 直接看一下下面的代码更清晰&#xff1a; 与上一节的break语句可以做一下对比…

正则表达式与正则可视化工具:解密文本处理的利器

正则表达式与正则可视化工具&#xff1a;解密文本处理的利器 引言 在计算机科学和软件开发领域&#xff0c;正则表达式是一种强大而灵活的文本处理工具。然而&#xff0c;对于初学者来说&#xff0c;正则表达式的语法和规则可能会显得晦涩难懂。为了帮助初学者更好地理解和学…

Linux---网络套接字

端口号 端口号 端口号是一个2字节16位的整数; 端口号用来标识一个进程, 告诉操作系统, 当前的这个数据要交给哪一个进程来处理; IP地址 端口号能够标识网络上的某一台主机的某一个进程; 一个端口号只能被一个进程占用 在公网上&#xff0c;IP地址能表示唯一的一台主机&…

新年福利:《YOLO目标检测》送书活动

博主简介 AI小怪兽&#xff0c;YOLO骨灰级玩家&#xff0c;1&#xff09;YOLOv5、v7、v8优化创新&#xff0c;轻松涨点和模型轻量化&#xff1b;2&#xff09;目标检测、语义分割、OCR、分类等技术孵化&#xff0c;赋能智能制造&#xff0c;工业项目落地经验丰富&#xff1b; …

12.atoi函数

文章目录 函数简介函数原型 代码运行 函数简介 函数原型 int atoi(char const *string);函数把字符转化为正数 代码运行 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h>int main() {int ret 0;char str[20] "112233";ret …

算法竞赛进阶指南——基本算法(倍增)

ST表 可以求区间最大、最小、gcd、lcm&#xff0c;符合 f(a, a) a都可以 求区间最值&#xff0c;一个区间划分成两段 f[i][j]: 从i开始&#xff0c;长度为2^j的区间最值 #include<iostream> #include<cmath> using namespace std; const int N 1e6 10; int n,…