ST表
可以求区间最大、最小、gcd、lcm,符合 f(a, a) = a都可以
求区间最值,一个区间划分成两段
f[i][j]: 从i开始,长度为2^j的区间最值
#include<iostream>
#include<cmath>
using namespace std;
const int N = 1e6 + 10;
int n, k, a[N];
int f[N][50];
//预处理
void pre(){
for(int i = 1; i <= n; i++) f[i][0] = a[i];
//以2为底,n的对数
int t = log(n) / log(2);
for(int j = 1; j <= t; j++)
for(int i = 1; i <= n - (1 << j) + 1; i++)
f[i][j] = min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}
int query(int l, int r){
int k = log(r - l + 1) / log(2);
return min(f[l][k], f[r - (1 << k) + 1][k]);
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
scanf("%d", &k);
pre();
for(int i = 1; i <= n; i++){
int l = max(1, i - k), r = min(n, i + k);
printf("%d ", query(l, r));
}
return 0;
}
天才ACM
#pragma GCC optimize(3, "Ofast", "inline")
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 5e5 + 10;
int k, n, m;
int a[N], b[N];
long long t;
long long f(int l, int r){
int z = 0;
for(int i = l; i < r; i++) b[z++] = a[i];
sort(b, b + z);
long long res = 0;
for(int i = 0, j = z - 1; i < m && i < j; i++, j--)
res += (long long)(b[j] - b[i]) * (b[j] - b[i]);
return res;
}
int main(){
scanf("%d", &k);
while(k--){
scanf("%d %d %lld", &n, &m, &t);
for(int i = 0; i < n; i++) scanf("%d", &a[i]);
int st = 0, ed = 0, ans = 0;
while(ed < n){
int len = 1;
while(len){
//[st, ed)
if(ed + len <= n && f(st, ed + len) <= t){
ed += len;
len *= 2;
}else len /= 2;
}
st = ed;
ans++;
}
printf("%d\n", ans);
}
return 0;
}