操作系统(14)----文件系统的结构

目录

一.文件系统的层次结构

1.用户接口:

2.文件目录系统:

3.存取控制模块:

4.逻辑文件系统与文件信息缓冲区:

5.物理文件系统:

二.文件系统的全局结构

1.文件系统在外存中的结构

(1)物理格式化:

(2)逻辑格式化:

2.文件系统在内存中的结构

(1)用户区:

•文件描述符

(2)内核区:

•目录的缓存

•系统打开文件表

•进程(用户)打开文件表

三.虚拟文件系统

四.文件系统挂载


一.文件系统的层次结构

用户系统的层次结构如下图所示,下面一 一介绍:

1.用户接口:

文件系统需要向上层的用户提供一些简单易用的功能接口。这层就是用于处理用户发出的系统调用请求(Read、Write、Open、Close 等系统调用)。

2.文件目录系统:

用户是通过文件路径来访问文件的因此这一层需妄根据用户给出的文件路径找到相应的FCB或索引结点。所有和目录、目录项相关的管理工作都在本层完成,如:管理活跃的文件目录表、管理打开文件表等。

3.存取控制模块:

为了保证文件数据的安全,还需要验证用户是否有访问权限。这一层主要完成了文件保护相关功能。

4.逻辑文件系统与文件信息缓冲区:

用户指明想要访问文件记录号这一层需要将记录号转换为对应的逻辑地址。如果采用索引文件的逻辑结构,那么会为文件的各个记录建立一个索引表,那么为了查询这些记录对应的逻辑地址,就需要查询文件的索引表,在查询文件的索引表之前就需要将索引表放到文件信息缓冲区中。

5.物理文件系统:

这一层需要把上一层提供的文件逻辑地址转换为实际的物理地址。物理文件系统又分为辅助分配模块和设备管理模块:

辅助分配模块:负责文件存储空间的管理,即负责分配和回收存储空间。

设备管理模块:直接与硬件交互,负责和硬件直接相关的一些管理工作。如:分配设备、分配设备缓冲区、磁盘调度、启动设备、释放设备等。

用一个例子来辅助记忆文件系统的层次结构:

假设某用户请求删除文件“D:/工作目录/学生信息.xlsx"的最后100条记录:
1.用户需要通过操作系统提供的接口发出上述请求----用户接口

2.由于用户提供的是文件的存放路径,因此需要操作系统一层一层地查找目录,找到对应的目录项----文件目录系统
3.不同的用户对文件有不同的操作权限,因此为了保证安全,需要检查用户是否有访问权限----存取控制模块(存取控制验证层)
4.验证了用户的访问权限之后,需要把用户提供的“记录号”转变为对应的逻辑地址----逻辑文件系统与文件信息缓冲区
5.知道了目标记录对应的逻辑地址后,还需要转换成实际的物理地址---物理文件系统

6.要删除这条记录,必定要对磁盘设备发出请求----设备管理程序模块

7.删除这些记录后,会有一些盘块空闲,因此要将这些空闲盘块回收----辅助分配模块

二.文件系统的全局结构

1.文件系统在外存中的结构
(1)物理格式化:

物理格式化,即低级格式化----划分扇区,检测坏扇区,并用备用扇区替换坏扇区。坏扇区对操作系统是透明的,操作系统不知道坏扇区的存在。

(2)逻辑格式化:

逻辑格式化后,磁盘分区(分卷Volume),完成各分区的文件系统初始化注:逻辑格式化后,灰色部分就有实际数据了,白色部分还没有数据。

每个磁盘的大小,范围都由分区表记录,每个分区可以建立独立的文件系统,例如下图中,C盘中建立了UNIX文件系统:

引导块:负责开机时初始化操作系统。

超级块:负责快速找到若干个空闲磁盘块。

空闲空间管理(如:位示图):判断某一磁盘块是否空闲。

i结点区:i表示索引结点,每个文件都有一个与之对应的索引结点,每个索引结点都放在i结点区,这个区域就是超大的数组,数组的每一个元素都代表一个索引结点。

由于索引结点在这片区域连续存放,并且每一个索引结点大小都相同,所以我们可以通过索引结点的下标,找到特定的索引结点。

根目录:完成逻辑格式化后,根目录会被建立,以根目录出发,在其下建立新文件。

2.文件系统在内存中的结构
(1)用户区:
•文件描述符

通过文件描述符,用户可以对文件进行相应操作。

(2)内核区:
•目录的缓存

最近访问的目录的数据会被暂时缓存在内存中,例如,最近查找了下图中的目录M,那么就需要将目录M读入主存,接下来如果又想访问目录M,就不需要从外存读入,直接在目录缓存寻找,那么就能加快目录检索速度。

•系统打开文件表

整个系统只有一张,记录了整个系统存放的所有文件。

•进程(用户)打开文件表

每个进程都有一个打开文件表,这个打开文件表被保存在每个进程的PCB中。记录了每个进程当前打开了哪些文件。

我们来看一下,当用户想要对某文件进行相应操作,内存和外存如何配合工作:

例如我们现在想要打开目录M中的文件A:

① open(..../M/A,只读);根据路径一级一级读入目录

② 找到目标文件的FCB,复制到系统打开文件表,同时将其“打开计数”设为1

③ 在进程打开文件表中新建一个条目,记录打开方式,并不会记录A文件的FCB,只会通过索引指向系统打开文件表对应的条目,进而得到FCB

④ 接下来,返回文件描述符,通过这一文件描述符就可以对文件A进行打开操作

如果想要对文件A进行读操作系统调用,就只需要传入文件描述符fd,同时指明要读多少字节,读的范围:read(fd,xxx,xxx),接着找到对应的进程打开文件表,根据索引信息,找到系统打开文件表,通过系统打开文件表找到文件A对应的FCB,操作系统就可以确定文件A在外存中的存放位置。如下图所示:

三.虚拟文件系统

不同的外存对应的文件系统类型可能不同,在不同的文件系统中,开发者定义的同一操作的函数接口可能并不相同,对于普通文件系统而言,若用户想要从文件系统打开某一文件,那么需要根据文件系统不同,调用不同函数接口,操作困难。所以引入一个统一的函数接口很有必要,这就引入了虚拟文件系统。

虚拟文件系统:

① 向上层用户进程提供统一标准的系统调用接口,屏蔽底层具体文件系统的实现差异。用户进程在打开文件时,只需要根据虚拟文件系统指定的标准,调用函数接口即可。

那么虚拟文件系统如何调用不同文件系统中的文件呢?

② VFS要求下层的文件系统必须实现某些规定的函数功能,如:open/read/write。一个新的文件系统想要在某操作系统上被使用,就必须满足该操作系统VFS的要求。如果不满足VFS的要求,那么操作系统就不支持这一文件系统。

③每打开一个文件,VFS就在主存中新建一个vnode,用统一的数据结构表示文件,无论该文件存储在哪个文件系统。

不同文件系统的目录项格式是不一样的,即不同的文件系统,表示文件数据结构各不相同。打开文件后,其在内存中的表示就不同。

例如:VFS访问来自UFS文件系统的文件与FAT文件系统的文件时,读入的文件信息不同,这样虚拟文件系统在内存中就必须使用不同的数据结构来表示来自不同文件系统的文件。所以在虚拟文件系统中使用open打开文件系统调用后,虚拟文件系统就会给这个文件在主存中新建vnode(v结点),这个v结点中包含文件的各种信息,这样虚拟文件系统就可以用v结点数据结构表示任何一个文件系统的文件。

注:vnode只存在于主存中,而inode既会被调入主存,也会在外存中存储。

例如,如果将要访问的文件在UFS文件系统中,找到文件的目录项后,会把文件的inode从外存调入内存,inode信息会被复制到内存的vnode中。

vnode中有一数据结构信息----函数功能指针

函数功能指针用于指向不同文件系统中的函数功能列表,再执行具体函数, 这样就能实现从上至下一层层的调用。

打开文件后,创建vnode,并将文件信息复制到vnode中,vnode的功能指针指向具体文件系统的函数功能。

四.文件系统挂载

文件系统挂载(mounting),即文件系统安装/装载----如何将一个文件系统挂载到操作系统中?

文件系统挂载要做的事:
① 在VFS中注册新挂载的文件系统。内存中的挂载表(mount table) 包含每个文件系统的相关信息,包括文件系统类型、容量大小等。
②新挂载的文件系统,要向VFS提供一个函数地址列表


③将新文件系统加到挂载点(mount point),也就是将新文件系统挂载在某个父目录下。例如:

•在windows文件系统中,若插入一个移动硬盘,那么就会出现一个与C,D盘同级的目录,例如下图U盘(E:)

•而在linux文件系统中,则会在系统根目录下建立一个Volumes文件夹,在这目录下存放新挂载的文件系统,这就是挂载点。

只有确定了新文件系统挂载的位置,才可以访问新的文件系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/383893.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux nohup命令和

参考资料 linux后台运行nohup命令的使用及2>&1字符详解 目录 前期准备一. 基本语法二. 执行时不指定日志文件三. 执行后不想要日志文件四. nohup命令的执行与kill4.1 执行4.2 kill 前期准备 📄handle_file.sh #!/bin/bashecho "文件复制开始..."…

2.11 运算符

1、选择题 1.1、若有以下程序 main() { char a1,b2; printf("%c,",b); printf("%d\n",b-a); } 程序运行后的输出结果是 C A)3,2 B)50,2 C)2,2 D)2,50 解析:b是先赋值后自加&#…

MacOS - M1芯片 Mac 在“恢复”模式中启用系统扩展教程

部分软件需要开启系统扩展才能正常使用,但是默然M1芯片的Mac不能直接打开系统扩展,如下两图。 若要启用系统扩展,您需要在“恢复”环境中修改安全性设置。 若要执行此操作,请将系统关机,然后按住触控ID或电源按钮以开…

寻找最优的路测线 - 华为OD统一考试

OD统一考试(C卷) 分值: 200分 题解: Java / Python / C 题目描述 评估一个网络的信号质量,其中一个做法是将网络划分为栅格,然后对每个栅格的信号质量计算。 路测的时候,希望选择一条信号最好…

《数电》理论笔记-第1章-逻辑代数基础

参考:视频 和 《数字电路与逻辑设计》 电子书 一,第1章 逻辑代数基础 1 数字量和模拟量 略 2 数制(十进制,二进制,八进制和十六进制) 拨电话(BoDH)---(2八10十六&…

【Django】Django项目部署

项目部署 1 基本概念 项目部署是指在软件开发完毕后,将开发机器上运行的软件实际安装到服务器上进行长期运行。 在安装机器上安装和配置同版本的环境[python,数据库等] django项目迁移 scp /home/euansu/Code/Python/website euansuxx.xx.xx.xx:/home…

labelImg和labelme区别

LabelImg和LabelMe是两种常用的标注工具,用于创建标注数据集以供机器学习和计算机视觉任务使用。虽然它们都具有相似的目标,即方便用户进行图像标注,但在某些方面存在一些区别。下面将介绍LabelImg和LabelMe的区别及联系,同时提供…

如何写出别人写不出的内容(译)

(译者序:这篇文章不只是写作,对信息获取、阅读也都有启发。随着社交媒体和 AI 的发展,人们越来越被动的接收海量信息,如何主动查找与整理对自己有用的内容,将是一个不可或缺的能力。) 原文&…

模型 PMF(产品市场契合度)

系列文章 主要是 分享 思维模型,涉及各个领域,重在提升认知。产品与市场高度契合。 1 PMF(Product Market Fit)产品市场契合度 的应用 1.1 PMF在创业过程中的应用-Vincy公司的产品PartnerShare 实现PMF需要企业深入了解目标市场的需求和用户的反馈&…

导数的定义【高数笔记】

【含义】可以抽象成,在一个极其短的时间段内,温度差 / 时间差 【本质】瞬间的平均值 【分类】可以分成几类?每类需要注意的点 【导数存在的必要条件】 【导数与极限的关系】可以参考导数的定义的式子 【题型解法】分几个题型?每个…

C++ shell - 在线 C++ 编译器

C shell - 在线 C 编译器 1. C shell2. Example program3. Options4. ExecutionReferences 1. C shell C Shell v2 https://cpp.sh/ https://cpp.sh/about.html C Shell v2, free online compiler, proudly uses emscripten to compile your code. emscripten is a clang-ba…

联想DP510、DP520、DP515打印机恢复出厂和自定义纸张方法

联想DP510、DP520、DP515恢复出厂设置方法 一、按下打印方式键,同时开机,直至打印头动作停止时松手; 二、水平装入 A4 纸,打印机自动调入并开始打印,若打印机将纸退出,将纸放平重新装入; 三、…

寒假9-蓝桥杯训练

//轨道炮 #include<iostream> using namespace std; #include<algorithm> int logs[100010]; int main() {int n;cin >> n;for (int i 1;i < n;i){cin >> logs[i];}sort(logs 1, logs n 1);int ans 1000000000;for (int i 2;i < n;i){if (…

Java:字符集、IO流 --黑马笔记

一、字符集 1.1 字符集的来历 我们知道计算机是美国人发明的&#xff0c;由于计算机能够处理的数据只能是0和1组成的二进制数据&#xff0c;为了让计算机能够处理字符&#xff0c;于是美国人就把他们会用到的每一个字符进行了编码&#xff08;所谓编码&#xff0c;就是为一个…

【AutoML】AutoKeras 进行 RNN 循环神经网络训练

由于最近这些天都在人工审查之前的哪些问答数据&#xff0c;所以迟迟都没有更新 AutoKeras 的训练结果。现在那部分数据都已经整理好了&#xff0c;20w 的数据最后能够使用的高质量数据只剩下 2k。这 2k 的数据已经经过数据校验并且对部分问题的提问方式和答案内容进行了不改变…

为什么Python是数据科学家的首选语言

这篇文章全面探讨了Python作为数据科学领域首选语言的原因。从Python的历史、特性&#xff0c;到在数据科学中的应用实例&#xff0c;再到与其他数据科学语言的比较&#xff0c;以及在实际企业中的应用&#xff0c;我们深入剖析了Python的优势与挑战&#xff0c;最后对Python的…

Linux:信号的保存

文章目录 信号相关概念信号递达信号未决信号阻塞内核中的示意图 信号集的操作函数 前面对于信号的产生中对操作系统有了一个基础的认知&#xff0c;对于一个真正的操作系统来说&#xff0c;进程是由操作系统进行调度的&#xff0c;那操作系统本身也是代码&#xff0c;是由谁进行…

算法沉淀——模拟(leetcode真题剖析)

算法沉淀——模拟 01.替换所有的问号02.提莫攻击03.Z字形变换04.外观数列05.数青蛙 模拟算法是一种通过模拟问题的描述或场景来解决问题的算法。这种算法的核心思想是按照问题描述的规则&#xff0c;逐步模拟问题的发展过程&#xff0c;从而得到问题的解决方案。通常&#xff0…

python-自动化篇-终极工具-用GUI自动控制键盘和鼠标-pyautogui

文章目录 用GUI自动控制键盘和鼠标pyautogui 模块鼠标屏幕位置——移动地图——pyautogui.size鼠标位置——自身定位——pyautogui.position()移动鼠标——pyautogui.moveTo拖动鼠标滚动鼠标 键盘按下键盘释放键盘 开始与结束通过注销关闭所有程序 用GUI自动控制键盘和鼠标 在…

InternLM大模型实战-4.XTuner大模型低成本微调实战

文章目录 前言笔记正文XTuner支持模型和数据集 微调原理跟随文档学习快速上手自定义微调准备数据准备配置文件 MS-Agent微调 前言 本文是对于InternLM全链路开源体系系列课程的学习笔记。【XTuner 大模型单卡低成本微调实战】 https://www.bilibili.com/video/BV1yK4y1B75J/?…