Matplotlib核心:掌握Figure与Axes

详细介绍Figure和Axes(基于Matplotlib)
在这里插入图片描述


🌵文章目录🌵

  • 🌳引言🌳
  • 🌳 一、Figure(图形)🌳
    • 🍁1. 创建Figure🍁
    • 🍁2. 添加Axes🍁
  • 🌳二、Axes(坐标轴)🌳
    • 🍁1. 创建Axes🍁
    • 🍁2. 绘制图表🍁
    • 🍁3. 设置Axes属性🍁
  • 🌳三、Figure和Axes的区别与联系🌳
  • 🌳四、进阶用法与技巧🌳
    • 🍁1. 多子图布局🍁
    • 🍁2. 共享坐标轴🍁
    • 🍁3. 保存和导出图表🍁
  • 🌳五、总结与展望🌳
  • 🌳结尾🌳

🌳引言🌳

在数据分析和可视化领域,Python的Matplotlib库因其强大的功能和广泛的应用而备受推崇。它为用户提供了创建多种类型图表的能力,如折线图、柱状图、散点图等,这些图表对于数据理解和展示至关重要。在Matplotlib库中,Figure和Axes是两个核心概念,它们共同构成了绘图的基础框架。本文将详细解读这两个概念,并探讨它们在Matplotlib中的实际应用,帮助读者更好地掌握数据可视化的关键要素。

🌳 一、Figure(图形)🌳

Figure在Matplotlib中代表了一个完整的图表,它包含了所有的绘图元素,如Axes、标题、图例等。我们可以将Figure看作是一个容器,其中包含了用于绘制图表的所有元素

🍁1. 创建Figure🍁

在Matplotlib中,我们可以使用plt.figure()函数来创建一个新的Figure对象。例如:

import matplotlib.pyplot as plt

fig = plt.figure()

这将创建一个默认的Figure对象。我们还可以通过传递参数来自定义Figure的大小、DPI等属性。例如:

fig = plt.figure(figsize=(10, 5), dpi=100)

这将创建一个宽度为10英寸、高度为5英寸、DPI为100的Figure对象。

🍁2. 添加Axes🍁

一旦我们创建了Figure对象,就可以向其添加Axes对象。Axes代表了一个坐标轴系统,它包含了数据、坐标轴标签、标题等。我们可以使用add_subplot()方法来向Figure中添加Axes。例如:

ax = fig.add_subplot(111)

这将在Figure中添加一个1x1的网格中的第一个子图。参数111表示网格的行数、列数和子图的索引。在这个例子中,我们创建了一个单一的Axes对象,占据了整个Figure的空间。

完整代码如下:

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_subplot(111)
plt.show()

运行结果如下图所示:

🌳二、Axes(坐标轴)🌳

Axes是Matplotlib中的另一个核心概念,它代表了一个坐标轴系统,用于显示数据和进行绘图。每个Axes对象一般都包含了一个X轴和一个Y轴,以及与之关联的数据和标签。

🍁1. 创建Axes🍁

如上所述,我们可以通过向Figure对象添加子图来创建Axes对象。除了使用add_subplot()方法外,我们还可以使用add_axes()方法来创建Axes对象,并指定其在Figure中的位置和大小。例如:

ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])

这将在Figure上创建一个占据了大部分空间的Axes对象。参数[0.1, 0.1, 0.8, 0.8]的原型是[left, bottom, width, height],其中 leftbottomAxes 左下角相对于 Figure 边缘的坐标(以小数形式表示,例如 0 是左/底部边缘,1 是右/顶部边缘),widthheightAxes 的宽度和高度(也是以小数形式表示)。

完整代码如下:

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁2. 绘制图表🍁

一旦我们有了Axes对象,就可以在其上进行绘图操作。Matplotlib提供了丰富的绘图函数,如plot()scatter()bar()等,用于在Axes上绘制各种图表。例如,要在Axes上绘制一个简单的折线图,我们可以这样做:

x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
ax.plot(x, y)

这将在Axes上绘制一个由点(1, 2)(2, 3)(3, 5)(4, 7)(5, 11)组成的折线图。

完整代码如下:

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
ax.plot(x, y)
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁3. 设置Axes属性🍁

除了绘制图表外,我们还可以设置Axes的各种属性,如标题、坐标轴标签、刻度等。Matplotlib提供了丰富的函数来设置这些属性。例如:

ax.set_title('Simple Line Plot')
ax.set_xlabel('X-axis Label')
ax.set_ylabel('Y-axis Label')
ax.set_xlim([0, 6])
ax.set_ylim([0, 12])

这些函数分别用于设置Axes的标题、X轴标签、Y轴标签、X轴范围和Y轴范围。

完整代码如下:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y)
ax.set_title('Simple Line Plot')
ax.set_xlabel('X-axis Label')
ax.set_ylabel('Y-axis Label')
ax.set_xlim([0, 6])
ax.set_ylim([0, 12])
plt.show()

运行结果如下图所示:

在这里插入图片描述

🌳三、Figure和Axes的区别与联系🌳

FigureAxes
定义Figure代表整个图表窗口或画布,它是一个容器,可以包含多个子图(Axes)。AxesFigure中的一个子图,它拥有自己的坐标轴、刻度、标签等,用于绘制具体的图表。
作用提供了一个绘制图表的区域,可以容纳一个或多个AxesFigure中绘制具体的图表,如折线图、柱状图等。
数量一个Figure可以包含多个Axes,可通过add_subplot方法添加。一个Figure中可以有多个Axes,但每个Axes都是独立的。
属性包含如尺寸、DPI(每英寸的点数)、背景色等属性。包含如坐标轴范围、刻度、标签、标题等属性。
层级关系AxesFigure的子对象,每个Axes都是Figure的一个部分。AxesFigure的直接子对象,与Figure有直接的层级关系。
绘制关系负责整体的布局和呈现,是图表的容器。Figure的指定位置进行绘制,展示具体的图表内容。

联系

  • AxesFigure的组成部分,每个Axes都在Figure的指定位置进行绘制。
  • FigureAxes共同构成了图表的基本结构,其中Figure提供了绘制的整体环境,而Axes则负责具体的图表内容展示。

区别

  • Figure是一个更高级别的概念,它代表了整个图表窗口或画布,而Axes则是Figure中的一个具体子图。
  • Figure主要负责整体的布局和呈现,而Axes则负责具体的图表绘制和内容展示。
  • 一个Figure可以包含多个Axes,而每个Axes都是独立的,拥有自己的坐标轴、刻度、标签等。

🌳四、进阶用法与技巧🌳

🍁1. 多子图布局🍁

Matplotlib允许在一个Figure中创建多个Axes,通过网格布局或自由布局的方式来实现多子图展示。例如,使用subplot2gridGridSpec可以创建复杂的子图布局。

"""  
绘制正弦、余弦以及它们的和在一个 2x2 的网格布局中。  
"""  
import matplotlib.pyplot as plt  
import numpy as np  

# 创建一个 2x2 的网格布局  
fig = plt.figure(figsize=(10, 8))  
gs = fig.add_gridspec(2, 2)  

# 在第一行,创建一个跨越两列的 Axes  
ax1 = fig.add_subplot(gs[0, :])  
# 在第二行,第一列创建一个 Axes  
ax2 = fig.add_subplot(gs[1, 0])  
# 在第二行,第二列创建一个 Axes  
ax3 = fig.add_subplot(gs[1, 1])  

# 生成一个从 0 到 2π,包含 100 个点的等差数列  
x = np.linspace(0, 2 * np.pi, 100)  
# 计算正弦值  
y1 = np.sin(x)  
# 计算余弦值  
y2 = np.cos(x)  

# 在 ax1 上绘制红色的正弦曲线,并设置标题为 'Sine'  
ax1.plot(x, y1, 'r')  
ax1.set_title('Sine')  

# 在 ax2 上绘制蓝色的余弦曲线,并设置标题为 'Cosine'  
ax2.plot(x, y2, 'b')  
ax2.set_title('Cosine')  

# 在 ax3 上绘制绿色的正弦和余弦的和的曲线,并设置标题为 'Sine + Cosine'  
ax3.plot(x, y1 + y2, 'g')  
ax3.set_title('Sine + Cosine')  

# 显示图形  
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁2. 共享坐标轴🍁

有时我们可能希望多个图表共享同一个X轴或Y轴。Matplotlib提供了sharexsharey参数来实现这一功能。

"""  
绘制正弦和余弦函数图像
"""
import matplotlib.pyplot as plt
import numpy as np

# 生成一个从0到2π包含100个点的等差数列
x = np.linspace(0, 2 * np.pi, 100)

# 计算正弦和余弦值
y1 = np.sin(x)
y2 = np.cos(x)

# 创建一个2行1列的子图布局,共享x轴
fig, axs = plt.subplots(2, 1, sharex=True)

# 在第一个子图上绘制正弦函数图像,并设置y轴标签为'Sine'
axs[0].plot(x, y1)
axs[0].set_ylabel('Sine')

# 在第二个子图上绘制余弦函数图像,并设置y轴标签为'Cosine'
axs[1].plot(x, y2)
axs[1].set_ylabel('Cosine')

# 调整子图之间的间距
fig.tight_layout()

# 显示图像
plt.show()

运行结果如下图所示:

在这里插入图片描述

🍁3. 保存和导出图表🍁

创建好图表后,我们可以使用savefig方法将其保存为图片文件,支持多种格式如PNG、PDF、SVG等。

plt.savefig('my_plot.png')  # 保存为PNG图片

🌳五、总结与展望🌳

通过本文的详细介绍,我们对Matplotlib中的Figure和Axes有了更加深入的理解。从基础的创建和设置,到进阶的多子图布局,Matplotlib提供了丰富的功能和灵活的接口,使得数据可视化变得简单而高效。未来,随着数据科学和可视化技术的不断发展,我们期待Matplotlib能够继续带来更多创新和便利的功能。

希望本文能够帮助读者更好地掌握Matplotlib中的Figure和Axes,并在实际的数据分析和可视化工作中发挥它们的强大作用。


🌳结尾🌳

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见💬
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果博文给您带来了些许帮助,那么,希望能为我们点个免费的赞👍👍/收藏👇👇,您的支持和鼓励👏👏是我们持续创作✍️✍️的动力
我们会持续努力创作✍️✍️,并不断优化博文质量👨‍💻👨‍💻,只为给带来更佳的阅读体验。
如果有任何疑问或建议,请随时在评论区留言,我们将竭诚为你解答~
愿我们共同成长🌱🌳,共享智慧的果实🍎🍏!


万分感谢🙏🙏点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/383262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux笔记之xhost +和docker的关系以及GDK_SCALE和GDK_DPI_SCALE详解

Linux笔记之xhost 和docker的关系以及GDK_SCALE和GDK_DPI_SCALE详解 ——2024-02-11 code review! 文章目录 Linux笔记之xhost 和docker的关系以及GDK_SCALE和GDK_DPI_SCALE详解xhost 的作用xhost 与 Docker 的关系 -e GDK_SCALE 和 -e GDK_DPI_SCALE详解GDK_SCALEGDK_DPI_SC…

8种基本类型的包装类(与String的转换)

java针对8种基本数据类型,定义了相应的引用类型:包装类(封装类),有了类的特点,就能调用类中的方法,java才是真正的面向对象。 基本数据类型 包装类byte Byteshort Shortint Integerlong Longfloat Floa…

操作系统——内存管理(附带Leetcode算法题LRU)

1.内存管理主要用来干什么? 操作系统的内存管理主要负责内存的分配与回收、内存扩充(虚拟技术)、地址转换(逻辑-物理)、内存保护(保证各进程在自己的内存空间运行,不会越界访问)..... 2.什么是内存碎片? 内存碎片是内存的申请和释放产生的…

C#,纽曼-尚克斯-威廉士素数(Newman Shanks Williams prime)的算法与源代码

1 NSW素数 素数是纽曼-尚克斯-威廉士素数(Newman-Shanks-Williams prime,简写为NSW素数)当且仅当它能写成以下的形式: 1981年M. Newman、D. Shanks和H. C. Williams在研究有限集合时,率先描述了NSW素数。 首几个NSW素…

LeetCode Python - 9.回文数

文章目录 题目答案运行结果 题目 给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。 例如&am…

CentOS在VMWare中扩容

1.相关概念 物理卷:简称PV,逻辑卷管理中处于最底层,它可以是实际物理硬盘上的分区,也可以是整个物理硬盘,一块硬盘,或多块硬盘,如/dev/sdb。 卷组:简称VG,建立在物理卷之…

解决 postman测试接口报404 Not Found

JDK版本:jdk17 IDEA版本:IntelliJ IDEA 2022.1.3 文章目录 问题描述原因分析解决方案 问题描述 当我使用postman测试接口时,报了 404 Not Found 的错误,报错截图如下所示 但我的后端程序中已经定义了该接口,如下所示 …

视频直播系统架构的设计与实现

视频直播系统作为一种实时性强、用户互动性高的应用,其架构设计至关重要。本文将介绍如何设计和实现一个稳定、高性能的直播系统架构,以提供良好的用户体验和可靠的服务。 1. 系统架构概述 - 介绍视频直播系统的整体架构,包括客户端、服务…

Java安全 CC链1分析(Lazymap类)

Java安全 CC链1分析 前言CC链分析CC链1核心LazyMap类AnnotationInvocationHandler类 完整exp: 前言 在看这篇文章前,可以看下我的上一篇文章,了解下cc链1的核心与环境配置 Java安全 CC链1分析 前面我们已经讲过了CC链1的核心ChainedTransf…

Structured Streaming

目录 一、概述 (一)基本概念 (二)两种处理模型 (三)Structured Streaming和Spark SQL、Spark Streaming关系 二、编写Structured Streaming程序的基本步骤 (一)实现步骤 &…

网络安全工程师技能手册(附学习路线图)

关键词:网络安全入门、渗透测试学习、零基础学安全、网络安全学习路线 安全是互联网公司的生命,也是每位网民的基本需求。现在越来越多的人对网络安全感兴趣,愿意投奔到网络安全事业之中,这是一个很好的现象。 很多对网络安全感…

Leetcode2842. 统计一个字符串的 k 子序列美丽值最大的数目

Every day a Leetcode 题目来源:2842. 统计一个字符串的 k 子序列美丽值最大的数目 解法1:哈希 数学 提示: 统计每个字符出现次数的个数,然后从大到小遍历次数 c 及其个数 num。 所有方案数相乘即为答案。 如果 k 太大&#…

【大厂AI课学习笔记】【1.6 人工智能基础知识】(4)深度学习和机器学习

关于深度学习和机器学习,出来包含关系之外,还有如上总结的知识点。 分别从特征处理、学习方法、数据依赖、硬件依赖等4个方面,进行了总结。 从特征处理上看:深度学习从数据中习得高级特征,并自行创建新的特征。这比普…

【AI绘图】初见·小白入门stable diffusion的初体验

首先,感谢赛博菩萨秋葉aaaki的整合包 上手 stable diffusion还是挺好上手的(如果使用整合包的话),看看界面功能介绍简单写几个prompt就能生成图片了。 尝试 我在网上找了一张赛博朋克边缘行者Lucy的cos图,可能会侵…

[ai笔记3] ai春晚观后感-谈谈ai与艺术

欢迎来到文思源想的ai空间,这是技术老兵重学ai以及成长思考的第3篇分享! 今天我们不聊技术,只聊感受! 1 关于ai春晚 期待许久的ai春晚,但是等初一晚上观看的时候,或多或少还是有些失望。 首先是观看人数…

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标 介绍准备工作数据准备计算移动平均线计算MACD指标结果展示完整代码演示 介绍 在股票市场中,技术分析是一种常用的方法,它通过对股票价格和交易量等历史数据的分析,来…

《UE5_C++多人TPS完整教程》学习笔记7 ——《P8 为项目配置 Steam(Configuring A Project for Steam)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P8 为项目配置 Steam(Configuring A Project for Steam)》 的学习笔记,该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版,UP主&…

数据结构——6.1 图的基本概念

第六章 图 6.1 图的基本概念 概念 图的概念:G由点集V和边集E构成,记为G(V,E),边集可以为空,但是点集不能为空 注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集…

《动手学深度学习(PyTorch版)》笔记8.5

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过&…

基于Linux操作系统的Docker容器安装MySQL随笔

1、在Linux上安装Docker容器 cd /etc/yum.repos.d/ curl -O https://download.docker.com/linux/centos/docker-ce.repo sed -i s/$releasever/8/g docker-ce.repo yum install -y docker-ce 2、修改Docker默认镜像仓库,然后启动Docker容器 sudo mkdir -p /etc/do…