海康威视球机摄像头运动目标检测、跟踪与轨迹预测

一、总体方案设计

运动目标检测与跟踪方案设计涉及视频流的实时拍摄、目标检测、轨迹预测以及云台控制。以下是四个步骤的详细设计:

1.室内场景视频流拍摄

使用海康威视球机摄像头进行室内视频流的实时拍摄。确保摄像头能覆盖整个室内空间,以便捕捉所有潜在的运动目标。

2.自动检测运动目标

使用计算机视觉算法(如YOLOv8)自动识别和定位视频流中的运动目标。在有多个目标的情况下,设计一个算法来评估并选择最显著的目标。显著性可以基于目标的大小、运动速度、运动路径的复杂性等因素。

3.运动目标轨迹预测

对于学硕项目,轨迹预测是必选项。可以使用卡尔曼滤波器、线性回归或其他适合的算法来预测目标的未来位置。系统应能处理目标的突然变化和非线性运动。

4.云台平稳跟踪运动目标

根据目标检测和轨迹预测的结果,控制云台摄像头跟踪运动目标。实现平稳的云台运动,以最小化视频流中的抖动,并确保目标始终保持在画面中心。

二、关键技术

1. 目标检测与识别

系统实现了对实时视频流的高效分析,能够快速处理和解析图像数据。采用如YOLOv8这样的先进深度学习模型进行目标检测,它不仅提供高准确性,还能有效处理复杂场景中的多种目标[1]。

2. 运动目标选择算法

系统能够评估每个目标的显著性,包括大小、运动速度和运动轨迹等特征。在存在多个目标时,系统能够自动选择最显著的目标进行跟踪,确保重点关注最关键的对象。

3. 轨迹预测技术

统能够实时处理目标数据,为轨迹预测提供即时输入。使用卡尔曼滤波[2]或线性回归等高效算法,准确预测目标的未来运动轨迹。

4. 云台控制系统

通过精确的控制算法,保证云台的平稳移动和准确定位。根据实时目标检测和轨迹预测结果,动态调整云台的方向和角度[3]。

5. 系统集成和优化

通过优化算法和硬件配置,确保系统具有快速响应能力和低延迟特性。系统设计注重长期稳定运行,能够在不同环境和条件下保持稳定性和可靠性。

三、图像采集系统设计

1.硬件组成

海康威视球机摄像头:提供高质量的视频流,具备良好的环境适应性。
计算单元:电脑的CPU和GPU,用于处理深度学习模型和运行复杂的算法。

2.软件架构

目标检测模块:实时分析视频流,识别和定位运动目标,位于主线程内。
目标选择模块:在多个目标存在时,以目标框的大小为指标选择最显著的目标。
轨迹预测模块:预测选中目标的未来运动轨迹,形成一个并行的线程。
云台控制模块:根据预测结果,控制云台摄像头跟踪目标,同样形成一个并行的线程。

3.用户界面

首先,显示实时视频流。
提供系统状态信息,如目标检测结果框和轨迹预测的轨迹线。
显示实时图像处理帧率并显示相应的mode。

4.数据处理流程

从球机摄像头捕获视频流。
通过目标检测模块分析视频。
选择最显著的目标并进行轨迹预测。
控制云台摄像头跟踪预测轨迹。
5.性能优化
确保低延迟和高帧率的视频流处理。
系统的稳健性和容错能力。

四、源程序设计和运行结果

本实验的程序使用的是python语言进行编写[4],使用YOLOv8进行目标检测,使用卡尔曼滤波器和线性回归进行轨迹预测,控制云台摄像头以跟踪移动目标,通过动态休眠时间来平滑云台的移动。

1.程序结构介绍

1.1. 导入所需的库
标准库包含os, platform, threading, time等。也包含了一些第三方库,例如tkinter, numpy, PIL, torch, cv2等。同时有YOLOv8和DeepSort相关库,另外还有Kalman滤波和线性回归的库。使用这些库大大提升了开发效率和效果。
1.2. 全局变量和参数初始化
首先,初始化YOLO模型。然后,需要设置轨迹预测和追踪相关的参数,如历史中心点、预测位置、最大历史记录数等。并且,初始化卡尔曼滤波器和线性回归模型。
1.3. 功能定义
initialize_kalman_filter:初始化卡尔曼滤波器。
predict_next_position_kalman 和 predict_next_point_linear:使用卡尔曼滤波器或线性回归预测目标的下一个位置。
draw_trajectory_on_image:在图像上绘制目标的历史轨迹和预测轨迹。
calculate_dynamic_sleep:根据目标距离计算动态休眠时间。
ytkz_and_gjyc:云台控制和轨迹预测函数。
LoginDev:登录并注册设备。
get_max_area_bbox:获取最大面积的边界框。
1.4. 主程序流程
首先,设置摄像头和设备信息。第二,登录设备并初始化。然后,启动云台控制和轨迹预测线程。主循环中读取视频帧,使用YOLO模型进行目标检测,根据模式进行轨迹预测和对象追踪。并且,显示处理后的视频帧。最后退出时,释放资源并登出设备。

2.目标跟踪

我在实验中主要做目标追踪任务,轨迹预测主要由本组另一名队员完成。
在追踪目标的过程中,采用了分步的方法进行追踪。如果检测框与图像中心的距离大于200像素,采用一个稍微大的速度进行追踪,当距离小于200像素,采用一个较小的速度进行追踪,这样可以使得目标跟踪更加稳定,解决了超调问题。而追踪的时间也是根据需要运动的距离长短来动态调整的。追踪的方向如下表所示,可以在八个方向进行云台移动。
表 云台控制旋转方向

方向命令定义值含义
TILT_UP21云台以SS的速度上仰
TILT_DOWN22云台以SS的速度下俯
PAN_LEFT23云台以SS的速度左转
PAN_RIGHT24云台以SS的速度右转
UP_LEFT25云台以SS的速度上仰和左转
UP_RIGHT26云台以SS的速度上仰和右转
DOWN_LEFT27云台以SS的速度下俯和左转
DOWN_RIGHT28云台以SS的速度下俯和右转
PAN_AUTO29云台以SS的速度左右自动扫描

下图是云台控制的操作流程图。
在这里插入图片描述

图 云台控制的操作流程图
本文利用的云台控制方法为NET_DVR_PTZControlWithSpeed,可以调整云台旋转的速度,按不同解码器的速度控制值设置。对云台实施的每一个动作都需要调用该接口两次,分别是开始和停止控制,由接口中的最后一个参数(dwStop)决定。在调用此接口之前需要先开启预览。与设备之间的云台各项操作的命令都对应于设备与云台之间的控制码,设备会根据目前设置的解码器种类和解码器地址向云台发送控制码。如果目前设备上设置的解码器与云台设备的不匹配,需要重新配置设备的解码器。如果云台设备所需的解码器设备不支持,则无法用该接口控制。
需要注意的是追踪目标并不是一步到位的,而是不断地小距离移动来追踪到目标。云台所走的路径是一个多段折线,相当于摄像头每次转动一下就会进行一次轨迹规划,只要相隔时间足够小,多段折线可以等效于一个光滑的曲线,这种实时目标跟踪提升了追踪的效果和性能。

3.运行结果

在这里插入图片描述
图 目标识别、目标跟踪、轨迹预测图示

4.结果分析

见于图像左下角,系统在处理视频流时的帧率(FPS)维持在20至50之间,最高可达50。这表明我们的系统能够以较高的频率处理图像,确保了视频显示的流畅性。通过观察和分析,我们发现系统中采用的深度学习目标检测模型展示出了良好的旋转不变性。即使在图像被旋转的情况下,模型仍能准确地识别和定位目标,这一点在实验中得到了验证。这种旋转不变性特别适用于监控场景中的动态环境,无论摄像头的角度如何变化,系统都能可靠地执行目标检测任务。视频流的稳定性是通过观察视频中目标的连续性和平滑性进行评估的。结果表明,即使在较高帧率下,图像保持稳定,没有出现抖动或者明显的延迟。这对于提高目标追踪的准确性和降低误报率非常关键。对于轨迹预测和目标跟踪任务该系统也能较好地完成,可以提前规划做出反应跟踪目标,保持目标居于图像中央。

5.附加功能探索

另外,作为探索,本实验还对yolov7-tiny模型进行了训练。为了识别坦克模型,本实验还制作了坦克目标检测数据集,包含1014张坦克图片:
在这里插入图片描述

图 坦克目标检测数据集
由图可见在模型的训练过程中,训练损失和验证损失在最初阶段快速衰减,这说明模型能够快速地学习到一些基本的特征和模式;然而,在训练后期,模型的收敛速度变慢,这可能是因为模型已经学习到了大部分的特征和模式,进一步提升需要更加细致的优化。最终,训练损失和验证损失都趋向于收敛,并且基本重合,这说明模型在训练过程中没有出现明显的过拟合现象,表明模型的泛化能力较好。
在这里插入图片描述

图 YOLOv7-tiny训练损失变化图
如图所示,经过训练,检测模型的平均精度(mAP)逐渐提升,并最终稳定在94%左右。这一结果表明,本研究中所采用的训练方法和参数设置都相对有效,训练出的模型具有较高的精度水平。
在这里插入图片描述

图 YOLOv7-tiny训练过程中mAP变化图
yolov7-tiny模型的目标检测帧率fps达到了20-30,可以和上文目标检测与跟踪代码的20-50的帧率相匹配,满足海康威视获取视频流的性能要求,该模型可以被用于海康的目标检测中。
在这里插入图片描述

图 yolov7-tiny坦克识别效果展示

五、实验结果及其评价

1.实验结果:

在测试中,目标检测准确性方面,系统成功检测目标的准确率很高,误检率控制的比较小。预测轨迹与实际轨迹的平均偏差很小。云台控制性能方面,云台响应速度快,能够平滑跟踪目标,实现画面中心保持目标的效果良好,并且没有出现超调现象。

2.实验评价:

整体表现良好,特别是在目标检测和跟踪方面。然而,在复杂背景或快速移动目标的情况下,性能有所下降。高准确率的目标检测,有效的轨迹预测,以及平稳的云台控制。在光照变化大和目标移动速度快的情况下,系统稳定性有待提高。

六、体会和建议

在设计和实现该系统的过程中,我获得了宝贵的学习经验和深刻的体会,在处理快速移动目标时遇到挑战,通过优化轨迹预测算法和调整云台控制参数得到改善。项目设计初期对硬件性能估计不足,导致实际运行中遇到了性能瓶颈。在实现实时目标检测时,我面临了处理速度和准确性之间的平衡问题。通过优化算法和调整模型参数,我能够提高系统的响应速度,同时保持较高的检测准确率。在目标跟踪的过程中,会出现云台控制超调问题,但是通过了多段跟踪思想对云台控制算法进行优化,解决了跟踪超调问题。
对于目标检测模块,在复杂环境下的适应性仍有提升空间。考虑采用更先进的深度学习模型,以提高其在不同条件下的鲁棒性。轨迹预测算法可以进一步优化,以更好地处理高速移动的目标和复杂的运动模式。在未来,考虑实现算法的并行处理和优化计算资源使用,以提高系统的整体性能。并且研究和集成最新的机器学习技术,持续提升系统的智能化水平。
针对特定应用场景,对于监控和安保领域,重点优化人群检测和异常行为识别功能。在交通监控领域,加强对快速移动车辆的追踪能力和准确性。

七、参考文献

[1] Reis D, Kupec J, Hong J, et al. Real-Time Flying Object Detection with YOLOv8[J]. arXiv preprint arXiv:2305.09972

[2] Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems[D] Transaction of the ASME—Journal of Basic Engineering, pp. 35-45 (March 1960).
[3] Hikvision. 设备网络SDK使用手册[M]. Hikvision Documentation (2023).
[4] Reitz, Kenneth, and Tanya Schlusser. The Hitchhiker’s Guide to Python: Best Practices for Development[M]. O’Reilly Media, 2016. ISBN: 978-1-491-92737-0.

可公开代码请见github

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/383121.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

考研数据结构笔记(7)

循环链表、静态链表、顺序表和链表的比较 循环链表循环单链表循环双链表 静态链表什么是静态链表如何定义一个静态链表?简述基本操作的实现 顺序表和链表的比较逻辑结构物理结构/存储结构数据的运算/基本运算创建销毁增加、删除查找 循环链表 循环单链表 循环双链表…

【浙大版《C语言程序设计实验与习题指导(第4版)》】实验7-1-6 求一批整数中出现最多的个位数字(附测试点)

定一批整数,分析每个整数的每一位数字,求出现次数最多的个位数字。例如给定3个整数1234、2345、3456,其中出现最多次数的数字是3和4,均出现了3次。 输入格式: 输入在第1行中给出正整数N(≤1000&#xff0…

Game辅助推广购卡系统全新一键安装版-已激活

(购买本专栏可免费下载栏目内所有资源不受限制,持续发布中,需要注意的是,本专栏为批量下载专用,并无法保证某款源码或者插件绝对可用,介意不要购买) 资源简介 运行环境 PHP5.6~7.0+MYSQL5.6 本程序可配合(伯乐发卡)基础版使用; 界面炫酷大气!程序内核为yunucm…

1.CVAT建项目步骤

文章目录 1. 创建project2. 创建task2.1. label 标签详解2.2.高级配置 Advanced configuration 3. 分配任务4. 注释者规范 CVAT的标注最小单位是Task,每个Task为一个标注任务。 1. 创建project 假设你并不熟悉cvat的标注流程,这里以图像2D目标检测为例进…

13. 串口接收模块的项目应用案例

1. 使用串口来控制LED灯工作状态 使用串口发送指令到FPGA开发板,来控制第7课中第4个实验的开发板上的LED灯的工作状态。 LED灯的工作状态:让LED灯按指定的亮灭模式亮灭,亮灭模式未知,由用户指定,8个变化状态为一个循…

《CSS 简易速速上手小册》第7章:CSS 预处理器与框架(2024 最新版)

文章目录 7.1 Sass:更高效的 CSS 编写7.1.1 基础知识7.1.2 重点案例:主题颜色和字体管理7.1.3 拓展案例 1:响应式辅助类7.1.4 拓展案例 2:深色模式支持 7.2 Bootstrap:快速原型设计和开发7.2.1 基础知识7.2.2 重点案例…

微信小程序的了解和使用

微信小程序 微信小程序的项目组成 pages 文件夹 用于存放所有的小程序页面 logs 文件夹 用于存放所有的日志文件 utils 文件夹 用于存放工具性质的模块 js app.js 小程序的入口文件 app.json 小程序的全局配置文件 app.wxss 全局样式文件 project.config.json 项目配置文…

解放双手!ChatGPT助力编写JAVA框架!

摘要 本文介绍了使用 ChatGPT逐步创建 一个简单的Java框架,包括构思、交流、深入优化、逐步完善和性能测试等步骤。 亲爱的Javaer们,在平时编码的过程中,你是否曾想过编写一个Java框架去为开发提效?但是要么编写框架时感觉无从下…

4核8g服务器能支持多少人访问?2024新版测评

腾讯云轻量4核8G12M轻量应用服务器支持多少人同时在线?通用型-4核8G-180G-2000G,2000GB月流量,系统盘为180GB SSD盘,12M公网带宽,下载速度峰值为1536KB/s,即1.5M/秒,假设网站内页平均大小为60KB…

程序员如何 “高效学习”?

开篇先说说我吧,马上人生要步入30岁的阶段,有些迷茫,更多的是焦虑,因为行业的特殊性导致我无时无刻不对 “青春饭” 的理论所担忧。担忧归担忧,生活还要继续,我们都知道这行全靠 “学习” 二字,…

树莓派编程基础与硬件控制

1.编程语言 Python 是一种泛用型的编程语言,可以用于大量场景的程序开发中。根据基于谷歌搜 索指数的 PYPL(程序语言流行指数)统计,Python 是 2019 年 2 月全球范围内最为流行 的编程语言 相比传统的 C、Java 等编程语言&#x…

【Linux】Linux下的基本指令

Linux下的基本指令 Linux 的操作特点:纯命令行ls 指令文件 pwd命令Linux的目录结构绝对路径 / 相对路径,我该怎么选择? cd指令touch指令mkdir指令(重要)rmdir指令rm 指令(重要)man指令&#xff…

静态时序分析:建立时间分析

静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析中,建立时间检查约束了触发器时钟引脚(时钟路径)和输入数据引脚(数据路径)之间的时序关系&#x…

HSM加密机原理:密钥管理和加密操作从软件层面转移到物理设备中 DUKPT 安全行业基础8

HSM加密机原理 硬件安全模块(HSM)是一种物理设备,设计用于安全地管理、处理和存储加密密钥和数字证书。HSM广泛应用于需要高安全性的场景,如金融服务、数据保护、企业安全以及政府和军事领域。HSM提供了一种比软件存储密钥更安全…

【前端高频面试题--Vue基础篇】

🚀 作者 :“码上有前” 🚀 文章简介 :前端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬前端高频面试题--Vue基础篇 Vue基本原理双向绑定与MVVM模型Vue的优点计算属性与监听属性计算属性监…

QGIS Desktop工具转换png文件为TIF文件

https://qgis.org/ QGIS Desktop 3.34.3 菜单 Layer -> Georeferencer 选择 文件 点击 加载的图片的左上角的点 弹窗中没有数据 录入 0 0 再加入右侧下面的点 调整下 数据 点击 绿色的箭头按钮 输出TIF文件 GeoServer中添加 存储仓库 点击 GeoTIFF 录入,选…

51单片机编程应用(C语言):篮球比赛计分器

设计思路 1.LCD1602显示A 000:B 000 右下角显示24的数字,显示一节时间12:00. 2.规定矩阵键盘每一位表示的含义 s1按下,A队加一分 s2按下,A队加两分 s3按下,A队加三分 s4按下,A队减一分 如…

搜索二维矩阵[中等]

一、题目 给你一个满足下述两条属性的m x n整数矩阵: 【1】每行中的整数从左到右按非严格递增顺序排列。 【2】每行的第一个整数大于前一行的最后一个整数。 给你一个整数target,如果target在矩阵中,返回true;否则,返…

猫头虎分享已解决Bug || 日志文件过大(Log File Oversize):LogFileOverflow, ExcessiveLoggingError

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …

数据分析基础之《pandas(6)—高级处理》

一、缺失值处理 1、如何处理nan 两种思路: (1)如果样本量很大,可以删除含有缺失值的样本 (2)如果要珍惜每一个样本,可以替换/插补(计算平均值或中位数) 2、判断数据是否…