【数据结构与算法】【小白也能学的数据结构与算法】递归 分治 迭代 动态规划 无从下手?一文通!!!

 🎉🎉欢迎光临🎉🎉

🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀

🌟特别推荐给大家我的最新专栏《数据结构与算法:初学者入门指南》📘📘

本专栏纯属为爱发电永久免费!!!

这是苏泽的个人主页可以看到我其他的内容哦👇👇

努力的苏泽icon-default.png?t=N7T8http://suzee.blog.csdn.net/

按自己需要跳哈 还是从小白的出发从浅到深

目录

了解递归:从简单到复杂

递归的概念和基本原理

递归算法的优缺点

优点:

缺点:

进阶递归技巧:优雅解决问题

尾递归和非尾递归

递归的边界条件和终止条件

递归调用的内存管理与性能优化

分治思想的基本原理

场景引发思考

引入分治思想

分析分治思想的原理

如何实现分治算法

分治与递归的关系与区别

分治和递归的定义和特点

分治和递归之间的联系和区别

代码示例解析

动态规划与递归的联系与区别

动态规划的概念和优势

动态规划

动态规划的思路

代码示例解析

迭代替代递归提高效率


递归

了解递归:从简单到复杂

递归是一种强大的问题解决方法,通过将问题分解为子问题并通过调用自身来解决。在本篇博客中,我们将深入了解递归的概念和基本原理,并使用C语言实现一些示例代码。

递归的概念和基本原理

递归是一种通过调用自身来解决问题的方法。它基于两个重要的原则:递归定义和递归终止条件。

递归定义是将一个大问题分解为一个或多个相同类型的子问题,并通过调用自身来解决这些子问题。递归终止条件是指当问题的规模足够小,可以直接解决时,递归停止并返回结果。

一个经典的递归应用场景是计算阶乘。阶乘的递归定义是n的阶乘等于n乘以(n-1)的阶乘,直到n等于1时终止。下面是用C语言实现计算阶乘的递归函数:

#include <stdio.h>

int factorial(int n) {
    if (n == 0 || n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}

int main() {
    int n = 5;
    int result = factorial(n);
    printf("The factorial of %d is %d\n", n, result);
    return 0;
}

在这个例子中,递归函数factorial通过调用自身来计算阶乘,当n等于0或1时,递归终止并返回1作为结果。

递归算法的优缺点

递归算法具有一些优点和缺点,下面我们将分别进行论述。

优点:
  1. 简化问题:递归能够将复杂的问题分解为更小的子问题,使问题更易于理解和解决。

  2. 优雅的解决方案:递归可以提供一种优雅的解决方案,使代码更加简洁和可读。

缺点:
  1. 内存消耗:递归调用会占用额外的内存空间,因为每个递归函数调用都需要保存函数的状态和局部变量。当递归的深度较大时,可能会导致栈溢出的问题。

  2. 性能损耗:递归调用的性能相对较低,因为每次函数调用都需要额外的开销。特别是在处理大规模问题时,递归可能导致性能下降。

进阶递归技巧:优雅解决问题

在递归中,我们可以使用一些技巧和思维模式来优雅地解决问题。下面介绍两个常用的技巧:尾递归和非尾递归。

尾递归和非尾递归

尾递归是指递归函数在递归调用的最后一步执行,且递归调用的返回值直接作为当前递归函数的返回值。尾递归的优点是可以通过尾递归优化,将递归转化为迭代,减少函数调用的内存消耗。

下面是一个计算斐波那契数列的尾递归实现例子:

#include <stdio.h>

int fibonacci(int n, int a, int b) {
    if (n == 0) {
        return a;
    } else if(n == 1) {
        return b;
    } else {
        return fibonacci(n - 1, b, a + b);
    }
}

int main() {
    int n = 6;
    int result = fibonacci(n, 0, 1);
    printf("The %dth Fibonacci number is %d\n", n, result);
    return 0;
}

在这个例子中,fibonacci函数使用尾递归实现斐波那契数列的计算。通过使用额外的参数来保存中间结果,避免了不必要的函数调用和内存消耗。

非尾递归是指递归函数在递归调用后还需要执行一些操作,而不是直接返回递归调用的结果。

非尾递归在某些情况下可能更好,尤其是在处理复杂的数据结构或算法时。以下是一个示例,说明非尾递归在某些情况下的优势。

问题描述:给定一个二叉树,计算树中所有节点的总和。

非尾递归的方案:

#include <stdio.h>
#include <stdlib.h>

typedef struct TreeNode {
    int val;
    struct TreeNode* left;
    struct TreeNode* right;
} TreeNode;

int sumOfNodes(TreeNode* root) {
    if (root == NULL) {
        return 0;
    }
    
    int leftSum = sumOfNodes(root->left);
    int rightSum = sumOfNodes(root->right);
    
    return root->val + leftSum + rightSum;
}

int main() {
    // 构建一个二叉树
    TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));
    root->val = 1;
    
    TreeNode* left = (TreeNode*)malloc(sizeof(TreeNode));
    left->val = 2;
    
    TreeNode* right = (TreeNode*)malloc(sizeof(TreeNode));
    right->val = 3;
    
    root->left = left;
    root->right = right;
    
    int result = sumOfNodes(root);
    printf("Sum of nodes: %d\n", result);
    
    free(left);
    free(right);
    free(root);
    
    return 0;
}

在这个例子中,我们使用递归的方式计算二叉树中所有节点的总和。递归地调用sumOfNodes函数计算左子树和右子树的节点总和,然后将根节点的值与子树的总和相加。

尾递归的解决方案如下:

#include <stdio.h>
#include <stdlib.h>

typedef struct TreeNode {
    int val;
    struct TreeNode* left;
    struct TreeNode* right;
} TreeNode;

int sumOfNodes(TreeNode* root, int currentSum) {
    if (root == NULL) {
        return currentSum;
    }
    
    currentSum += root->val;
    
    currentSum = sumOfNodes(root->left, currentSum);
    currentSum = sumOfNodes(root->right, currentSum);
    
    return currentSum;
}

int main() {
    // 构建一个二叉树
    TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));
    root->val = 1;
    
    TreeNode* left = (TreeNode*)malloc(sizeof(TreeNode));
    left->val = 2;
    
    TreeNode* right = (TreeNode*)malloc(sizeof(TreeNode));
    right->val = 3;
    
    root->left = left;
    root->right = right;
    
    int result = sumOfNodes(root, 0);
    printf("Sum of nodes: %d\n", result);
    
    free(left);
    free(right);
    free(root);
    
    return 0;
}

在这个例子中,我们使用尾递归的方式计算二叉树中所有节点的总和。将当前节点的值加到currentSum上,并将更新后的currentSum传递给递归调用。这样,递归调用不会增加额外的堆栈帧,而是保持在同一层级上进行计算。

尽管在这个例子中,尾递归的解决方案与非尾递归的解决方案在结果上是相同的,但在处理更复杂的数据结构或算法时,非尾递归的解决方案可能更直观和易于理解。非尾递归可以更好地表达问题的逻辑,而且不需要额外的参数传递。

所以我们要根据题目的具体情况而选定用哪种(其实实际上两种都能互相解决各自的问题 我一般直接用尾递归就好了)

递归的边界条件和终止条件

递归的边界条件和终止条件非常重要,它们决定了递归何时停止并返回结果。边界条件是指问题规模足够小,可以直接解决的情况。终止条件是指当问题满足边界条件时,递归停止并返回结果。

下面是一个递归实现的二分查找算法的例子:

#include <stdio.h>

int binarySearch(int arr[], int low, int high, int target) {
    if (low > high) {
        return -1;
    }
    
    int mid = (low + high) / 2;
    
    if (arr[mid] == target) {
        return mid;
    } else if (arr[mid] > target) {
        return binarySearch(arr, low, mid - 1, target);
    } else {
        return binarySearch(arr, mid + 1, high, target);
    }
}

int main() {
    int arr[] = {1, 2, 3, 4, 5, 6, 7, 8};
    int n = sizeof(arr) / sizeof(arr[0]);
    int target = 6;
    
    int result = binarySearch(arr, 0, n - 1, target);
    
    if (result == -1) {
        printf("Element not found\n");
    } else {
        printf("Element found at index %d\n", result);
    }
    
    return 0;
}

在这个例子中,binarySearch函数使用递归实现了二分查找算法。递归终止条件是当low大于high时,说明查找范围为空,返回-1表示未找到目标元素。

递归调用的内存管理与性能优化

递归调用涉及内存管理和性能优化。在实际使用中,我们需要注意以下几点来管理内存和提高性能:

  1. 尽量减少递归调用的层数,以避免栈溢出的问题。可以考虑使用迭代或尾递归优化来降低内存消耗。

  2. 注意内存的释放。在使用动态分配的内存(例如使用malloc函数分配的内存)时,要确保在递归结束后释放内存,避免内存泄漏。

下面是一个使用递归实现斐波那契数列的示例代码,同时给出了对应的优化后的代码:

#include <stdio.h>
#include <stdlib.h>

// 未优化的递归实现
int fibonacci(int n) {
    if (n == 0 || n == 1) {
        return n;
    } else {
        return fibonacci(n - 1) + fibonacci(n - 2);
    }
}

// 优化后的递归实现,使用动态规划保存中间结果
int fibonacciOptimized(int n) {
    int* dp = (int*) malloc((n + 1) * sizeof(int));
    dp[0] = 0;
    dp[1] = 1;
    
    for (int i = 2; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    
    int result = dp[n];
    free(dp); // 释放动态分配的内存
    
    return result;
}

int main() {
    int n = 6;
    
    int result = fibonacciOptimized(n);
    
    printf("The %dth Fibonacci number is %d\n", n, result);
    
    return 0;
}

在这个例子中,我们使用动态规划的思想优化了斐波那契数列的递归实现。通过使用一个数组dp来保存中间结果,避免了重复计算。在递归结束后,我们使用free函数释放了动态分配的内存,以避免内存泄漏。

性能优化方面,我们使用了动态规划来避免重复计算,从而提高了运行效率。相比于原始的递归实现,优化后的版本在处理大规模问题时更加高效。

分治思想的基本原理

场景引发思考

假设你需要在一个包含大量数字的数组中找到最大的数字。你会如何解决这个问题呢?

引入分治思想

在解决这个问题的过程中,我们可以引入分治思想。分治法是一种问题解决方法,它将大问题划分为若干个相同或相似的子问题,然后解决子问题,并将子问题的解合并得到原问题的解。

分析分治思想的原理

分治思想的核心原理是将大问题划分为子问题,然后递归地解决子问题,最后将子问题的解合并得到原问题的解。

具体步骤如下:

  1. 分解(Divide):将原问题划分为若干个相同或相似的子问题。
  2. 解决(Conquer):递归地解决每个子问题。如果子问题足够小(可以直接解决),则直接求解。
  3. 合并(Combine):将子问题的解合并得到原问题的解。

如何实现分治算法

分治算法通常通过递归实现。在递归的过程中,将问题划分为子问题,递归地解决子问题,然后将子问题的解合并得到原问题的解。

示例代码如下(使用C语言实现):

#include <stdio.h>

// 分治法求解最大值
int findMax(int arr[], int start, int end) {
    if (start == end) {
        return arr[start];
    } else {
        int mid = (start + end) / 2;
        int leftMax = findMax(arr, start, mid);
        int rightMax = findMax(arr, mid + 1, end);
        return (leftMax > rightMax) ? leftMax : rightMax;
    }
}

int main() {
    int arr[] = {2, 8, 1, 6, 5, 4, 9, 3, 7};
    int n = sizeof(arr) / sizeof(arr[0]);

    int max = findMax(arr, 0, n - 1);
    printf("The maximum number is: %d\n", max);

    return 0;
}

分治与递归的关系与区别

分治和递归的定义和特点

分治和递归都是常见的问题解决方法,它们在一定程度上有相似之处,但也存在一些区别。

分治是一种将问题分解为若干个相同或相似的子问题,递归地解决子问题,并将子问题的解合并得到原问题的解的方法。分治的特点包括:

  • 将问题划分为子问题
  • 子问题的解相互独立
  • 子问题的解可以合并得到原问题的解

递归是一种通过调用自身来解决问题的方法。递归的特点包括:

  • 问题可以通过相同的问题的较小实例的解来表示
  • 递归函数调用自身来解决较小实例
  • 递归调用必须有终止条件,否则会导致无限递归

分治和递归之间的联系和区别

分治和递归之间存在一些联系和区别。

联系:

  • 分治算法通常通过递归来实现,将问题划分为子问题并递归地解决子问题。
  • 递归是分治的一种实现方式,递归函数可以调用自身来解决子问题。

区别:

  • 分治算法将问题划分为子问题,子问题之间相互独立,且子问题的解可以合并得到原问题的解。
  • 递归是通过调用自身来解决较小实例的问题,没有明显的分解和合并过程。
  • 分治算法通常需要明确的分解和合并步骤,而递归算法则更关注问题的分解和终止条件。

代码示例解析

下面我们通过一个代码示例来说明分治和递归的使用。

#include <stdio.h>

// 使用分治法求和
int sum(int arr[], int start, int end) {
    if (start == end) {
        return arr[start];
    } else {
        int mid = (start + end) / 2;
        int leftSum = sum(arr, start, mid);
        int rightSum = sum(arr, mid + 1, end);
        return leftSum + rightSum;
    }
}

// 使用递归法求和
int sumRecursive(int arr[], int start, int end) {
    if (start == end) {
        return arr[start];
    } else {
        return arr[start] + sumRecursive(arr, start + 1, end);
    }
}

int main() {
    int arr[] = {1, 2, 3, 4, 5};
    int n = sizeof(arr) / sizeof(arr[0]);

    int divideSum = sum(arr, 0, n - 1);
    printf("Sum using divide and conquer: %d\n", divideSum);

    int recursiveSum = sumRecursive(arr, 0, n - 1);
    printf("Sum using recursion: %d\n", recursiveSum);

    return 0;
}

在上述示例代码中,我们使用分治和递归两种方法来求解给定数组的和。通过递归地划分子问题和合并子问题的解,我们可以得到整个数组的和。其中sum()函数使用分治法求和,而sumRecursive()函数使用递归法求和。

动态规划与递归的联系与区别

动态规划的概念和优势

动态规划是一种解决多阶段决策问题的优化方法。它通过将问题分解为多个重叠子问题,并以自底向上的方式解决这些子问题,最终得到原问题的解。动态规划的优势包括:

  • 避免重复计算:动态规划使用表格或数组来保存子问题的解,避免了重复计算,提高了计算效率。
  • 自底向上的求解方式:动态规划通常使用迭代的方式自底向上地求解子问题,而不是通过递归调用。
  • 提供最优解:动态规划可以通过比较子问题的解来得到最优解,适用于求解最优化问题。

动态规划

当使用动态规划来解决斐波那契数列问题时,我们可以使用自底向上的方法,通过解决子问题来构建更大规模的问题的解。

斐波那契数列是一个以递归方式定义的数列,其中每个数字是前两个数字的和。数列的前几个数字通常是0、1或1、1。例如,斐波那契数列的前几个数字是0、1、1、2、3、5、8、13等。

动态规划的思路

动态规划通常涉及将问题分解为较小的子问题,并使用一种记忆化的方法来存储子问题的解,以避免重复计算。对于斐波那契数列问题,我们可以使用动态规划的思路来解决它。

  1. 确定状态:我们可以将斐波那契数列的第n个数字作为状态,记为f(n)。
  2. 定义状态转移方程:根据斐波那契数列的定义,我们知道f(n) = f(n-1) + f(n-2)。
  3. 确定初始条件:斐波那契数列的初始条件是f(0) = 0和f(1) = 1。

代码示例解析

下面我们通过一个代码示例来说明动态规划的实现思路和优化效果。

#include <stdio.h>

// 使用动态规划计算斐波那契数列
int fibonacciDP(int n) {
    int fib[n+1];
    fib[0] = 0;
    fib[1] = 1;

    for (int i = 2; i <= n; i++) {
        fib[i] = fib[i-1] + fib[i-2];
    }

    return fib[n];
}

// 使用递归计算斐波那契数列
int fibonacciRecursive(int n) {
    if (n <= 1) {
        return n;
    } else {
        return fibonacciRecursive(n-1) + fibonacciRecursive(n-2);
    }
}

int main() {
    int n = 6;

    int dpResult = fibonacciDP(n);
    printf("n=%d,recursion=%d\n", n, dpResult);

    int recursiveResult = fibonacciRecursive(n);
    printf("n=%d,recursion=%d\n", n, recursiveResult);

    return 0;
}

在上述示例代码中,我们使用动态规划和递归两种方法来计算斐波那契数列的第n个数。通过动态规划的方式,我们使用迭代的方式自底向上地计算子问题的解并保存在数组中,避免了重复计算。而递归的方式则通过不断调用自身来解决较小实例的问题。

这个示例代码展示了动态规划和递归在求解斐波那契数列问题上的不同实现方式,以及动态规划通过避免重复计算提高了计算效率的优势。

迭代替代递归提高效率

迭代相对于递归具有一些优势,可以提高效率和节省内存。

论证迭代相对于递归的优势:

  • 迭代通常使用循环结构,而不是函数的递归调用,减少了函数调用的开销。
  • 迭代可以使用辅助变量来保存中间结果,避免了递归函数的栈帧开销。
  • 迭代可以更好地利用计算机的缓存,提高了数据访问的效率。
  • 迭代通常更容易理解和调试,代码结构更清晰。

下面是一个具体的代码示例,对比了使用迭代和递归两种方式计算阶乘的效率。

#include <stdio.h>

// 使用迭代计算阶乘
int factorialIterative(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++) 
        result *= i;
       return result;
}

// 使用递归计算阶乘
int factorialRecursive(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorialRecursive(n - 1);
    }
}

int main() {
    int n = 5;
    int dpResult = fibonacciDP(n);
    printf("n=%d,recursion=%d\n", n, dpResult);

    int recursiveResult = fibonacciRecursive(n);
    printf("n=%d,recursion=%d\n", n, recursiveResult);
    return 0;
}

在上述示例代码中,我们使用迭代和递归两种方式来计算阶乘。通过使用迭代的方式,我们避免了递归调用的开销,并使用循环结构直接计算阶乘。与之相比,递归函数调用的开销较大,递归深度增加时容易导致栈溢出。

这个示例代码展示了迭代相对于递归的优势,通过迭代的方式可以提高效率和节省内存。

博主码字不易,要是能帮助到大家麻烦给个免费的三连 支持一下 感谢你的观看 下期再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/382670.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络】Web HTTP

Web和HTTP HTTP 超文本传输协议 HyperText Transfer Protocol HTTP使用TCP作为支撑传输协议 由一个客户程序和一个服务器程序实现一些常见名词。。。无状态协议 stateless protocol 不保存关于客户的任何信息非持续/持续链接 non-persistent con…

【十三】【C++】vector简单实现

代码实现 /*vector类简单实现*/ #if 1 #define _CRT_SECURE_NO_WARNINGS#include <iostream> using namespace std; #include <vector> #include <algorithm> #include <crtdbg.h> #include <assert.h> #include <string.h>namespace MyVe…

寒假作业2024.2.11

请使用递归实现n! #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <unistd.h> int fun(int n) {if (n0) {return 1;} else {return n*fun(n-1);} } int main(int argc, const char *argv[]) {int n…

嵌入式系统学习指南:从入门到精通

如今嵌入式系统已经广泛应用于工控、消费电子、汽车电子、医疗设备等多个领域。越来越多的IT工程师选择进入嵌入式系统行业。那么作为新手,如何系统地学习嵌入式知识,从入门到精通呢?本文将为大家提供一份简单的自学路线。&#xff08;个人观点&#xff0c;仅供参考&#xff0…

代码随想录 Leetcode55. 跳跃游戏

题目&#xff1a; 代码(首刷自解 2024年2月9日&#xff09;&#xff1a; class Solution { public:bool canJump(vector<int>& nums) {int noz 0;for (int i nums.size() - 2; i > 0; --i) {if (nums[i] 0) {noz;continue;} else {if (nums[i] > noz) noz …

vtkActor 设置特定图层 显示及置顶显示

问题&#xff0c;有时我们需要显示某个 Actor 在相机最前面&#xff0c;可以遮盖后面的物体;显示在顶层有点不准确&#xff1b;因为这个还相机位置也有关系&#xff1b; 这里讲三种情况&#xff1a; 1. 设置 Mapper 顶层&#xff0c;尝试了一下&#xff0c;可以用于某些场景&…

《PCI Express体系结构导读》随记 —— 第II篇 第4章 PCIe总线概述(12)

接前一篇文章&#xff1a;《PCI Express体系结构导读》随记 —— 第II篇 第4章 PCIe总线概述&#xff08;11&#xff09; 4.2 PCIe体系结构的组成部件 PCIe总线作为处理器系统的局部总线&#xff0c;其作用与PCI总线类似&#xff0c;主要目的是为了连接处理器系统中的外部设备…

前后端分离nodejs+vue流浪狗宠物领养公益网站

1.发现公益&#xff1a;主要是根据社会上的调研&#xff0c;来收集的社会上有关流浪狗的公益活动&#xff0c;发布在公益网站上能被更多人发现&#xff0c;主要让更多人能参与到公益活动中来&#xff0c;并调动群众的同情心和爱心&#xff0c;借此希望在养宠物的主人能避免自己…

直播app开发,技术驱动的实时互动新纪元

随着互联网技术的快速发展&#xff0c;直播已成为我们日常生活的重要组成部分。从娱乐、教育到商业活动&#xff0c;直播的广泛应用正在改变着我们的生活和工作方式。在这一变革中&#xff0c;直播开发扮演着至关重要的角色。本文将探讨直播开发的核心理念、技术挑战以及未来的…

【EAI 017】Interactive Language: Talking to Robots in Real Time

论文标题&#xff1a;Interactive Language: Talking to Robots in Real Time 论文作者&#xff1a;Corey Lynch, Ayzaan Wahid, Jonathan Tompson Tianli Ding, James Betker, Robert Baruch, Travis Armstrong, Pete Florence 作者单位&#xff1a;Robotics at Google 论文原…

林浩然与杨凌云的Java世界奇遇记:垃圾回收大冒险

林浩然与杨凌云的Java世界奇遇记&#xff1a;垃圾回收大冒险 The Java Adventure Chronicles of Lin Haoran and Yang Lingyun: Garbage Collection Odyssey 在一个充满0和1代码森林的世界里&#xff0c;住着两位勇敢的程序员侠侣——林浩然和杨凌云。林浩然是个身怀Java绝技的…

k8s -ingress

概念 Ingress 公开了从集群外部到集群内服务的 HTTP 和 HTTPS 路由&#xff0c;ingress能代理集群为内部的网络&#xff0c;将集群外部的HTTP/HTTPS网络请求转发至不同的service&#xff0c;其本质就是创建一个NodePort类型的svc,和一个nginx 组成 k8s中的ingress 其实是指…

【万题详解】洛谷P1282 多米诺骨牌

题目 链接——题目在这里&#xff01;&#xff01;&#xff01; 多米诺骨牌由上下 22 个方块组成&#xff0c;每个方块中有 1∼6 个点。现有排成行的上方块中点数之和记为 S1​&#xff0c;下方块中点数之和记为 S2​&#xff0c;它们的差为 ∣∣S1​−S2​。如图S161119&…

提升MySQL访问性能

1. 读写分离 设置多个从数据库&#xff0c;从数据库可能在多个机器中。写操作在主数据库进行主数据库提供数据的主要依据 缓解了MySQL的读压力。 主从复制原理图如下 如果对于读操作有一致性要求&#xff0c;那么读操作去主数据库即可。 2. 连接池 因为一个请求必须要…

SpringCloud-Nacos服务分级存储模型

Nacos 服务分级存储模型是 Nacos 存储服务注册信息和配置信息的核心模型之一。它通过将服务和配置信息按照不同级别进行存储&#xff0c;实现了信息的灵活管理和快速检索&#xff0c;为微服务架构下的服务发现和配置管理提供了高效、可靠的支持。本文将对 Nacos 服务分级存储模…

黄金交易策略(Nerve Nnife.mql4):三档移动止盈机制设计

和中国电费一样&#xff0c;一档档的上。 完整EA&#xff1a;Nerve Knife.ex4黄金交易策略_黄金趋势ea-CSDN博客 mql4代码节选如下&#xff1a; //第一张单上涨2500&#xff0c;开始SL跟踪300点if (count 1 && !follow_p_3){double ctp calcTotalProfit(0, "b…

vue-生命周期+工程化开发(三)

生命周期 Vue 生命周期 和 生命周期的四个阶段 思考&#xff1a; 什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09;什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a;一个Vue实例从 创建…

在VSCode中创建Java项目

在VSCode中创建Java项目 首先&#xff0c;保证安装了Java的JDK. WinR -> 输入cmd -> 输入 java -version -> 然后可以看到安装的JDK版本&#xff0c;如果没安装可以去找教程。 JDK安装参考教程 打开VSCode&#xff0c;打开扩展&#xff08;Ctrl Shift S&#xff…

车载自动化项目:Python

1. 自动化测试用的什么框架&#xff1f; 第一种&#xff1a;PythonSeleniumuittest框架 首先是拿到需求文档&#xff0c;基于这个需求去进行搭建。 用pytestrequestallure 这些第三方库进行编写自动化脚本。 举个例子一般的话整个的一个自动化的搭建是分为6层嘛&#xff1a…

火车可视化调车系统

列车在调车作业时&#xff0c;当机车头在尾部推动车厢时&#xff0c;司机室一人操控机车&#xff0c;车厢前端配备两名挂梯随车运行调车员&#xff0c;调车员人为分析行车方向是否有障碍、轨道行人等紧急情况&#xff0c;通过对讲机通知司机控制停车。由于司机无法直观观察列车…