Python 3 中使用 pandas 和 Jupyter Notebook 进行数据分析和可视化

简介

Python 的 pandas 包用于数据操作和分析,旨在让您以直观的方式处理带标签或关联数据。

pandas 包提供了电子表格功能,但由于您正在使用 Python,因此它比传统的图形电子表格程序要快得多且更高效。

在本教程中,我们将介绍如何设置一个大型数据集,pandasgroupby()pivot_table() 函数,以及如何可视化数据。

要熟悉 pandas 包,您可以阅读我们的教程《Python 3 中 pandas 包及其数据结构的介绍》。

先决条件

本指南将介绍如何在本地桌面或远程服务器上使用 pandas 处理数据。处理大型数据集可能会占用大量内存,因此在任何情况下,计算机都需要至少 2GB 内存 来执行本指南中的一些计算。

在本教程中,我们将使用 Jupyter Notebook 来处理数据。如果您尚未安装,请按照我们的教程安装并设置 Python 3 的 Jupyter Notebook。

设置数据

在本教程中,我们将使用美国社会保障网站上提供的有关婴儿姓名的数据,该数据以 8MB 的压缩文件形式提供。

让我们在本地计算机上激活我们的 Python 3 编程环境,或者在服务器上从正确的目录开始:

cd environments
. my_env/bin/activate

现在让我们为我们的项目创建一个新目录。我们可以称之为 names,然后进入该目录:

mkdir names
cd names

在该目录中,我们可以使用 curl 命令从社会保障网站获取 zip 文件:

curl -O https://www.ssa.gov/oact/babynames/names.zip

文件下载完成后,让我们验证我们将要使用的所有软件包是否已安装:

  • numpy 用于支持多维数组
  • matplotlib 用于可视化数据
  • pandas 用于数据分析
  • seaborn 用于美化我们的 matplotlib 统计图形

如果您尚未安装任何软件包,请使用 pip 安装它们,例如:

pip install pandas
pip install matplotlib
pip install seaborn

如果您尚未安装 numpy 包,它也将被安装。

现在我们可以启动 Jupyter Notebook:

jupyter notebook

一旦您进入 Jupyter Notebook 的 Web 界面,您将在那里看到 names.zip 文件。

要创建一个新的笔记本文件,请从右上角的下拉菜单中选择 New > Python 3

!创建一个新的 Python 3 笔记本

这将打开一个笔记本。

让我们从导入我们将要使用的软件包开始。在我们的笔记本顶部,我们应该写入以下内容:

import numpy as np
import matplotlib.pyplot as pp
import pandas as pd
import seaborn

我们可以运行此代码,并通过键入 ALT + ENTER 进入新的代码块。

让我们还告诉 Python Notebook 在线保留我们的图形:

matplotlib inline

让我们运行代码,并通过键入 ALT + ENTER 继续。

从这里,我们将继续解压缩 zip 存档,将 CSV 数据集加载到 pandas 中,然后连接 pandas 数据帧。

解压缩 Zip 存档

要将 zip 存档解压缩到当前目录中,我们将导入 zipfile 模块,然后使用文件名(在我们的情况下是 names.zip)调用 ZipFile 函数:

import zipfile
zipfile.ZipFile('names.zip').extractall('.')

我们可以运行代码,并通过键入 ALT + ENTER 继续。

现在,如果您回到 names 目录,您将在其中看到以 CSV 格式存储的姓名数据的 .txt 文件。这些文件将对应于文件中的年份数据,从 1881 年到 2015 年。这些文件都遵循类似的命名约定。例如,2015 年的文件名为 yob2015.txt,而 1927 年的文件名为 yob1927.txt

为了查看其中一个文件的格式,让我们使用 Python 打开一个文件并显示前 5 行:

open('yob2015.txt','r').readlines()[:5]

运行代码,并通过键入 ALT + ENTER 继续。

['Emma,F,20355\n',
 'Olivia,F,19553\n',
 'Sophia,F,17327\n',
 'Ava,F,16286\n',
 'Isabella,F,15504\n']

数据的格式是首先是姓名(如 EmmaOlivia),然后是性别(女性姓名为 F,男性姓名为 M),然后是当年出生具有该姓名的婴儿数量(2015 年出生的名为 Emma 的婴儿有 20,355 个)。

有了这些信息,我们就可以将数据加载到 pandas 中。

将 CSV 数据加载到 pandas

要将逗号分隔值数据加载到 pandas 中,我们将使用 pd.read_csv() 函数,传递文本文件的名称以及我们决定的列名。我们将将其分配给一个变量,本例中为 names2015,因为我们使用的是 2015 年出生文件的数据。

names2015 = pd.read_csv('yob2015.txt', names = ['Name', 'Sex', 'Babies'])

键入 ALT + ENTER 来运行代码并继续。

为了确保这一步成功,让我们显示表的顶部:

names2015.head()

当我们运行代码并继续使用 ALT + ENTER 时,我们将看到以下输出:

!names2015.head 输出

我们的表现在包含了按列组织的名称、性别和每个名称出生的婴儿数量的信息。

连接 pandas 对象

连接 pandas 对象将允许我们处理 names 目录中的所有单独的文本文件。

要连接这些文件,我们首先需要通过将变量分配给未填充的列表数据类型来初始化一个列表:

all_years = []

一旦我们这样做了,我们将使用 for 循环来遍历所有年份的文件,范围从 1880 年到 2015 年。我们将在 2015 年的末尾添加 +1,以便在循环中包括 2015 年。

all_years = []

for year in range(1880, 2015+1):

在循环内部,我们将使用字符串格式化程序将每个文本文件的值附加到列表中。我们将把这些值传递给 year 变量。同样,我们将为 NameSexBabies 指定列:

all_years = []

for year in range(1880, 2015+1):
    all_years.append(pd.read_csv('yob{}.txt'.format(year),
                                 names = ['Name', 'Sex', 'Babies']))

此外,我们将为每一年创建一个列,以保持这些列的顺序。我们可以在每次迭代后使用索引 -1 来指向它们。

all_years = []

for year in range(1880, 2015+1):
    all_years.append(pd.read_csv('yob{}.txt'.format(year),
                                 names = ['Name', 'Sex', 'Babies']))
    all_years[-1]['Year'] = year

最后,我们将使用 pd.concat() 函数将其添加到 pandas 对象中进行连接。我们将使用变量 all_names 存储这些信息。

all_years = []

for year in range(1880, 2015+1):
    all_years.append(pd.read_csv('yob{}.txt'.format(year),
                                 names = ['Name', 'Sex', 'Babies']))
    all_years[-1]['Year'] = year

all_names = pd.concat(all_years)

我们现在可以使用 ALT + ENTER 运行循环,然后通过调用结果表的尾部(最底部的行)来检查输出:

all_names.tail()

!all_names.tail 输出

我们的数据集现在已经完整,准备在 pandas 中进行进一步处理。

数据分组

使用 pandas,您可以使用 .groupby() 函数按列对数据进行分组。使用我们的 all_names 变量作为完整数据集,我们可以使用 groupby() 将数据拆分为不同的桶。

让我们按性别和年份对数据集进行分组。我们可以这样设置:

group_name = all_names.groupby(['Sex', 'Year'])

我们可以运行代码并继续使用 ALT + ENTER

此时,如果我们只调用 group_name 变量,我们将得到以下输出:

<pandas.core.groupby.DataFrameGroupBy object at 0x1187b82e8>

这向我们显示它是一个 DataFrameGroupBy 对象。该对象包含如何对数据进行分组的指令,但它不提供如何显示值的指令。

要显示值,我们需要提供指令。我们可以计算 .size().mean().sum(),例如,以返回一个表。

让我们从 .size() 开始:

group_name.size()

当我们运行代码并继续使用 ALT + ENTER 时,我们的输出将如下所示:

Sex  Year
F    1880      942
     1881      938
     1882     1028
     1883     1054
     1884     1172
...

这些数据看起来不错,但它可能更易读。我们可以通过附加 .unstack 函数使其更易读:

group_name.size().unstack()

现在当我们运行代码并继续输入 ALT + ENTER 时,输出将如下所示:

!group_name.size().unstack() 输出

这些数据告诉我们每年有多少个女性和男性的名字。例如,在 1889 年,有 1,479 个女性名字和 1,111 个男性名字。在 2015 年,有 18,993 个女性名字和 13,959 个男性名字。这显示随着时间的推移,名字的多样性更大。

如果我们想要获得出生的总婴儿数,我们可以使用 .sum() 函数。让我们将其应用于较小的数据集,即我们之前创建的单个 yob2015.txt 文件的 names2015 集:

names2015.groupby(['Sex']).sum()

让我们键入 ALT + ENTER 来运行代码并继续:

names2015.groupby(['Sex']).sum() 输出

这显示了 2015 年出生的男性和女性婴儿的总数,尽管数据集中只计算了那一年至少使用了 5 次的名字的婴儿。

pandas.groupby() 函数允许我们将数据分成有意义的组。

透视表

透视表对于总结数据非常有用。它们可以自动对存储在一个表中的数据进行排序、计数、求和或求平均值。然后,它们可以在一个新的表中显示这些操作的结果。

pandas 中,使用 pivot_table() 函数来创建透视表。

要构建一个透视表,我们首先会调用我们想要处理的 DataFrame,然后是我们想要显示的数据,以及它们如何分组。

在这个例子中,我们将使用 all_names 数据,并按照一个维度中的名称和另一个维度中的年份来显示婴儿数据:

pd.pivot_table(all_names, 'Babies', 'Name', 'Year')

当我们键入 ALT + ENTER 来运行代码并继续时,我们将看到以下输出:

!pd.pivot_table(all_names, ‘Babies’, ‘Name’, ‘Year’) 输出

因为这显示了很多空值,我们可能希望将名称和年份保留为列,而不是在一个情况下作为行,在另一个情况下作为列。我们可以通过在方括号中对数据进行分组来实现:

pd.pivot_table(all_names, 'Babies', ['Name', 'Year'])

当我们键入 ALT + ENTER 来运行代码并继续时,这个表现在只会显示每个名称记录的年份的数据:

Name       Year
Aaban      2007     5.0
           2009     6.0
           2010     9.0
           2011    11.0
           2012    11.0
           2013    14.0
           2014    16.0
           2015    15.0
Aabha      2011     7.0
           2012     5.0
           2014     9.0
           2015     7.0
Aabid      2003     5.0
Aabriella  2008     5.0
           2014     5.0
           2015     5.0

此外,我们可以将数据分组为名称和性别作为一个维度,年份作为另一个维度,如下所示:

pd.pivot_table(all_names, 'Babies', ['Name', 'Sex'], 'Year')

当我们运行代码并继续使用 ALT + ENTER 时,我们将看到以下表格:

pd.pivot_table(all_names, 'Babies', ['Name', 'Sex'], 'Year') 输出

透视表让我们可以从现有表格中创建新表格,从而决定我们希望如何对数据进行分组。

可视化数据

通过使用 pandas 与其他包如 matplotlib,我们可以在笔记本中可视化数据。

我们将要可视化有关特定名称多年来的受欢迎程度的数据。为了做到这一点,我们需要设置和排序索引,以重新处理数据,从而可以看到特定名称受欢迎程度的变化。

pandas 包让我们可以进行分层或多级索引,这使我们能够存储和操作具有任意数量维度的数据。

我们将使用性别、名称和年份的信息来索引我们的数据。我们还希望对索引进行排序:

all_names_index = all_names.set_index(['Sex','Name','Year']).sort_index()

键入 ALT + ENTER 来运行并继续到我们的下一行,我们将让笔记本显示新的索引 DataFrame:

all_names_index

运行代码并继续使用 ALT + ENTER,输出将如下所示:

!all_names_index 输出

接下来,我们将编写一个函数,用于绘制名称随时间的受欢迎程度。我们将命名该函数为 name_plot,并将 sexname 作为参数传递,我们将在运行函数时调用这些参数。

def name_plot(sex, name):

现在,我们将设置一个名为 data 的变量来保存我们创建的表。我们还将使用 pandas DataFrame 的 loc 来根据索引的值选择我们的行。在我们的情况下,我们希望 loc 基于 MultiIndex 中的字段组合,涉及到 sexname 数据。

让我们将这个构造写入我们的函数中:

def name_plot(sex, name):
    data = all_names_index.loc[sex, name]

最后,我们将使用 matplotlib.pyplot 来绘制值,我们将其导入为 pp。然后,我们将性别和名称数据的值绘制到索引上,对于我们的目的来说,索引是年份。

def name_plot(sex, name):
    data = all_names_index.loc[sex, name]
    
    pp.plot(data.index, data.values)

键入 ALT + ENTER 来运行代码并移动到下一个单元格。现在,我们可以使用我们选择的性别和名称调用函数,比如使用给定名称 Danica 的女性名称 F

name_plot('F', 'Danica')

当你现在键入 ALT + ENTER,你将收到以下输出:

!Danica 名称绘图 输出

请注意,根据您使用的系统,您可能会收到有关字体替换的警告,但数据仍将正确绘制。

通过查看可视化,我们可以看到女性名称 Danica 在 1990 年左右有一小波动,并在 2010 年之前达到了高峰。

我们创建的函数可以用于绘制多个名称的数据,以便我们可以看到不同名称随时间的趋势。

让我们首先将我们的绘图稍微放大一点:

pp.figure(figsize = (18, 8))

接下来,让我们创建一个包含我们想要绘制的所有名称的列表:

pp.figure(figsize = (18, 8))

names = ['Sammy', 'Jesse', 'Drew', 'Jamie']

现在,我们可以通过 for 循环遍历列表,并绘制每个名称的数据。首先,我们将尝试将这些性别中性名称作为女性名称:

pp.figure(figsize = (18, 8))

names = ['Sammy', 'Jesse', 'Drew', 'Jamie']

for name in names:
    name_plot('F', name)

为了使这些数据更容易理解,让我们包括一个图例:

pp.figure(figsize = (18, 8))

names = ['Sammy', 'Jesse', 'Drew', 'Jamie']

for name in names:
    name_plot('F', name)
    
pp.legend(names)

我们将键入 ALT + ENTER 来运行代码并继续,然后我们将收到以下输出:

!名称绘图,女性名称 输出

尽管每个名称作为女性名称的受欢迎程度都在缓慢增长,但在 1980 年左右,名称 Jamie 作为女性名称非常受欢迎。

让我们以相同的名称绘制相同的名称,但这次作为男性名称:

pp.figure(figsize = (18, 8))

names = ['Sammy', 'Jesse', 'Drew', 'Jamie']

for name in names:
    name_plot('M', name)
    
pp.legend(names)

再次键入 ALT + ENTER 来运行代码并继续。图表将如下所示:

!名称绘图,男性名称 输出

这些数据显示了更多名称的受欢迎程度,Jesse 通常是最受欢迎的选择,并且在 1980 年代和 1990 年代特别受欢迎。

从这里,您可以继续使用名称数据,创建关于不同名称及其受欢迎程度的可视化,并创建其他脚本来查看不同数据以进行可视化。

结论

本教程介绍了处理大型数据集的方法,从设置数据开始,到使用 groupby()pivot_table() 对数据进行分组,使用 MultiIndex 对数据进行索引,并使用 matplotlib 包可视化 pandas 数据。

许多组织和机构提供数据集,您可以继续学习 pandas 和数据可视化。例如,美国政府通过 data.gov 提供数据。

您可以通过阅读我们的指南了解如何使用 matplotlib 可视化数据,包括《如何使用 matplotlib 在 Python 3 中绘制数据》和《如何使用 Python 3 和 matplotlib 绘制词频图表》。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/382544.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第74讲Breadcrumb 面包屑实现

Breadcrumb 面包屑实现 为了实现二级路由&#xff0c;我们搞成搞个子路由&#xff0c;对于二级菜单 const routes [{path: /,name: 首页,component: () > import(../views/layout),redirect:/home,children:[{path: /home,name: 首页,component: () > import(../views…

《CSS 简易速速上手小册》第1章:CSS 基础入门(2024 最新版)

文章目录 1.1 CSS 语法和选择器&#xff1a;挑选你的画笔1.1.1 基础知识1.1.2 重点案例&#xff1a;创建一个响应式导航菜单1.1.3 拓展案例 1&#xff1a;为特定链接添加图标1.1.4 拓展案例 2&#xff1a;创建一个简单的问答折叠面板 1.2 盒模型的基础&#xff1a;构建你的乐高…

【RabbitMQ(二)】:Exchange 详解 | Message Convert 消息转换器

文章目录 03. 使用 Java 代码去操控 RabbitMQ3.1 快速入门3.1.1 创建父子项目3.1.2 编写代码 3.2 Work 模型3.3 RabbitMQ 中的三类交换机3.3.1 Fanout 扇出交换机3.3.2 Direct 交换机3.3.3 Topic 交换机 3.4 声明队列交换机3.4.1 方式一&#xff1a;书写 Config 类3.4.2 方式二…

【软件使用】【edge】如何让edge的某个网页作为应用安装

【背景】 有些常用网页希望用双击快捷方式的形式打开更加效率&#xff0c;我的浏览器主要是edge&#xff0c;研究了两种方法来实现这个需求。 【Edge自带方法】 点击Edge的右上角三点水-》应用-》将此站点作为应用安装。 点击安装&#xff0c;可以选择是否加到开始屏幕等。 …

Linux 从日志中抽取信息,批量生成SQL语句并执行

这里写目录标题 一. 需求分析二. 从日志中抽取出指定字段&#xff0c;并切分为若干个子文件三. 生成查询执行计划四. 生成查询的SQL语句五. 检查并执行 一. 需求分析 有如下日志文件&#xff0c;假设日志文件中有10000条数据&#xff0c;要求将全部的TRANSACTIONID抽取出来&am…

vue3 之 商城项目—二级分类

二级分类功能描述 配置二级路由 准备组件模版 <script setup></script><template><div class"container "><!-- 面包屑 --><div class"bread-container"><el-breadcrumb separator">"><el-bre…

python coding with ChatGPT 打卡第19天| 二叉树:合并二叉树

相关推荐 python coding with ChatGPT 打卡第12天| 二叉树&#xff1a;理论基础 python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历 python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历 python coding with ChatGPT 打卡第15天| 二叉树&#xff1a;翻转…

在虚拟机上完成Centos安装

Linux学习和使用 前言如何安装Centos初始化操作 使用VMware备份操作系统快照克隆 内容总结参考链接 本人介绍:2023年全国大学生数学建模竞赛国家二等奖,2022年蓝桥杯省二等奖,这里是一个和你一起不断努力,不断前进的程序猿一枚 前言 简单介绍一下本片文章将会讲到的内容:本章节…

关于创建vue项目报错command failed: npm install --loglevel error

一、首先 在这个目录下有个文件叫.vuerc 二、其次 进去之后把里面的"useTaobaoRegistry": false,修改下&#xff0c;我之前是true&#xff0c;后来改成了false才成功。

【大厂AI课学习笔记】【1.6 人工智能基础知识】(1)人工智能、机器学习、深度学习之间的关系

6.1 人工智能、机器学习与深度学习的关系 必须要掌握的内容&#xff1a; 如上图&#xff1a;人工智能>机器学习>深度学习。 机器学习是人工智能的一个分支&#xff0c;该领域的主要研究对象是人工智能&#xff0c;特别是如何在经验学习中改进具体算法的性能。 深度学习…

【MySQL进阶之路】生产案例:数据库无法连接,Too many connections

欢迎关注公众号&#xff08;通过文章导读关注&#xff1a;【11来了】&#xff09;&#xff0c;及时收到 AI 前沿项目工具及新技术的推送&#xff01; 在我后台回复 「资料」 可领取编程高频电子书&#xff01; 在我后台回复「面试」可领取硬核面试笔记&#xff01; 文章导读地址…

【leetcode】965. 单值二叉树

题目链接 965. 单值二叉树 bool isUnivalTree(struct TreeNode* root) {// if (root->left ! NULL && root->right ! NULL) {// return root->val root->left->val// && root->val root->right->val// && isUnivalTr…

算法学习——LeetCode力扣二叉树篇3

算法学习——LeetCode力扣二叉树篇3 116. 填充每个节点的下一个右侧节点指针 116. 填充每个节点的下一个右侧节点指针 - 力扣&#xff08;LeetCode&#xff09; 描述 给定一个 完美二叉树 &#xff0c;其所有叶子节点都在同一层&#xff0c;每个父节点都有两个子节点。二叉树…

【开源】JAVA+Vue.js实现衣物搭配系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 衣物档案模块2.2 衣物搭配模块2.3 衣物收藏模块 三、系统设计3.1 用例设计3.2 E-R图设计3.3 数据库设计3.3.1 衣物档案表3.3.2 衣物搭配表3.3.3 衣物收藏表 四、系统实现4.1 登录页4.2 衣物档案模块4.3 衣物搭配模块4.4…

C语言每日一题(54)对称二叉树

力扣网 101 对称二叉树 题目描述 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false提…

国际物流数字化运输方式选择指南 | 箱讯科技

国际物流涉及多种运输方式&#xff0c;每种方式都有其独特的优势和适用场景。选择合适的运输方式对于确保货物安全、及时到达目的地并控制成本至关重要。以下是对六种主要国际运输方式的简要介绍和选择建议&#xff1a; 国际快递&#xff1a;适用于小件、高价值或急需的货物。…

游戏服务器租用价格表_TOP3费用对比

游戏服务器租用多少钱一年&#xff1f;1个月游戏服务器费用多少&#xff1f;阿里云游戏服务器26元1个月、腾讯云游戏服务器32元&#xff0c;华为云26元&#xff0c;游戏服务器配置从4核16G、4核32G、8核32G、16核64G等配置可选&#xff0c;游戏专业服务器公网带宽10M、12M、15M…

python+django人力资源管理系统7w5x3

技术栈 后端&#xff1a;python 前端&#xff1a;vue.jselementui 框架&#xff1a;django Python版本&#xff1a;python3.7 数据库&#xff1a;mysql5.7 数据库工具&#xff1a;Navicat 开发软件&#xff1a;PyCharm .设计框架&#xff1a;Vue 1. 表现层&#xff1a;写多…

微软 CMU - Tag-LLM:将通用大语言模型改用于专业领域

文章目录 一、前言二、主要内容三、总结 &#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一、前言 论文地址&#xff1a;https://arxiv.org/abs/2402.05140 Github 地址&#xff1a;https://github.com/sjunhongshen/Tag-LLM 大语言模型&#xff08…

vue3初识

目录 一、前言二、主观感受三、vue3初探 原文以及该系列教程文章后续可点击这里查看&#xff1a;vue初识 一、前言 Vue.js是一款流行的前端框架&#xff0c;最初由尤雨溪&#xff08;Evan You&#xff09;于2014年创建&#xff0c;非常的年轻。官网为vue3&#xff0c; 但要注…