论文笔记:相似感知的多模态假新闻检测

整理了RecSys2020 Progressive Layered Extraction : A Novel Multi-Task Learning Model for Personalized Recommendations)论文的阅读笔记

  • 背景
  • 模型
  • 实验

论文地址:SAFE

背景

  在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图片来吸引读者的注意力。本文提出了一种相似感知的新闻检测方法(SAFE),该方法研究新闻文章的多模态(文本和视觉)信息。首先,分别提取文本特征和视觉特征进行新闻表示。进一步研究了跨模态提取的特征之间的关系。这种新闻文本和视觉信息的表征以及它们之间的关系被共同学习并用于预测假新闻。所提出的方法有助于根据文本、图像或不匹配来识别新闻文章的真实性。
  SAFE由三个模块组成,分别进行(1)多模态(文本和视觉)特征提取;(2)模态内(或者说模态无关)假新闻预测;(3)跨模态相似性提取。
  主要贡献:提出了第一种研究新闻文本和视觉信息之间的关系(相似性)在预测假新闻中的作用的方法,联合利用多模态(文本和视觉)和关系信息来学习新闻文章的表示和预测假新闻。

模型

  符号定义:对于一篇新闻(article) A = { T , V } A=\{T,V\} A={T,V}由视觉信息 V V V和文本信息 T T T组成,定义 t ∈ R d t\in R^d tRd v ∈ R d v\in R^d vRd作为相应的表示, t = M t ( T , θ t ) t=M_t(T,\theta_t) t=Mt(T,θt) v = M v ( V , θ v ) v=M_v(V,\theta_v) v=Mv(V,θv),定义相似度函数 s = M s ( t , v ) s=M_s(t,v) s=Ms(t,v),s是个0到1之间的值。通过这些信息,SAFE得到文章的二分类目标 y ^ = 0 / 1 \hat y=0/1 y^=0/1,定义总的函数: M p : ( M t , M v , M s ) ⟶ θ t , θ v , θ s y ^ ∈ { 0.1 } M_p:(M_t,M_v,M_s)\stackrel{\theta_t,\theta_v,\theta_s}{\longrightarrow}\hat y\in\{0.1\} Mp:(Mt,Mv,Ms)θt,θv,θsy^{0.1}
  文本特征提取:本文使用经过全连接层扩展的Test-CNN提取每篇文章的表示,其结构如图二:
在这里插入图片描述
  包含一个卷积层和最大池化,给定一段包含n个单词的内容,每个单词首先被编码为 x t l ∈ R k , l = 1 , 2 , . . . , n x_t^l\in R^k,l=1,2,...,n xtlRk,l=1,2,...,n经过卷积层,我们会得到一个featuremap,定义为 C t = { c t i } i = 1 n − h + 1 C_t=\{c_t^i\}_{i=1}^{n-h+1} Ct={cti}i=1nh+1 h h h就是卷积核的大小,对相邻的h个单词的表示进行卷积,这个过程的公式: c t i = σ ( w t ⋅ x t i : ( i + h − 1 ) + b t ) c_t^i=\sigma(w_t\cdot x_t^{i:(i+h-1)}+b_t) cti=σ(wtxti:(i+h1)+bt) x i : ( i + h − 1 ) = x i ⊕ x i + 1 ⊕ . . . ⊕ x i + h − 1 x^{i:(i+h-1)}=x_i\oplus x_{i+1} \oplus...\oplus x_{i+h-1} xi:(i+h1)=xixi+1...xi+h1  其中 ⊕ \oplus 表示的是concat操作。通过公式我们可以看到,他这里所谓的卷积就是把窗口大小的单词表示全部拼接起来然后过一个全连接层,经过卷积后,每一个卷积核h,我们都会拿到一个n乘1的表示,n是单词数量。然后对于每一个卷积核形成的featuremap进行最大池化。到这里,我们定义拿到的结果为 c ^ t = m a x { c t i } i = 1 n − h + 1 , c ^ t ∈ R g \hat c_t=max\{c_t^i\}_{i=1}^{n-h+1},\hat c_t \in R^g c^t=max{cti}i=1nh+1,c^tRg,这个g就是卷积核的数量。
  然后作者又对它进行了进一步的处理: t = W t c ^ t + b t t = W_t\hat c_t+b_t t=Wtc^t+bt拿到最终的文本表示。这是一个d维的,所以 W t W_t Wt的维度应该是d乘g。
  图像特征提取,首先使用预训练的image2sentence model,然后还是使用Test-CNN提取表示,流程与上文相同,最后一步为 v = W v c ^ v + b v v = W_v\hat c_v+b_v v=Wvc^v+bv,拿到图像的d维表示。
  到这里,我们可以直接把新闻中提取到的文本和图像表示拼起来进行预测了,可以用交叉熵损失训练模型。作者认为,除此之外,新闻文章的虚假性也可以通过评估文本信息与视觉信息的相关性来检测;假新闻创作者有时会主动使用不相关的图像进行虚假陈述,以吸引读者的注意,或者由于难以找到支持性的非操纵图像而被动使用它们。与提供相关文字和视觉信息的新闻文章相比,那些陈述和图片不一致的新闻文章更有可能是假的。于是作者基于余弦相似度定义了一个相似度: M s ( t , v ) = t ⋅ v + ∣ ∣ t ∣ ∣   ∣ ∣ v ∣ ∣ 2 ∣ ∣ t ∣ ∣   ∣ ∣ v ∣ ∣ M_s(t,v)=\frac {t\cdot v+||t|| \ ||v||}{2||t|| \ ||v||} Ms(t,v)=2∣∣t∣∣ ∣∣v∣∣tv+∣∣t∣∣ ∣∣v∣∣  这个相似度是在[0,1]的范围取值,通过计算得到的这个相似度,作者重新定义了损失函数,把相似度加进去: L ( θ t , θ v ) = − E ( a , y ) ( y l o g ( 1 − M s ( t , v ) ) + ( 1 − y ) l o g M s ( t , v ) ) \mathcal{L}(\theta_t,\theta_v)=-E_{(a,y)}(ylog(1-M_s(t,v))+(1-y)logM_s(t,v)) L(θt,θv)=E(a,y)(ylog(1Ms(t,v))+(1y)logMs(t,v))  本文总的模型:在这里插入图片描述

实验

  实验使用的数据集是FakeNewsNet中的PolitiFact(政治)和 GossipCop(八卦)两个领域的数据集,数据集概览:
在这里插入图片描述  实验结果:
在这里插入图片描述  消融实验设置:(1)综合新闻文本信息、视觉信息及其关系(SAFE)在所有变体中表现最好;(2)使用多模态信息(SAFE\S或SAFE\W)比使用单模态信息(SAFE\T或SAFE\V)表现更好;(3)通过独立使用多模态信息(SAFE\S)或挖掘它们之间的关系(SAFE\W)来检测假新闻是相当的;(4)文本信息(SAFE\V)比视觉信息(SAFE\T)更重要。在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/382225.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java并发基础:LinkedBlockingQueue全面解析!

内容概要 LinkedBlockingQueue类是以链表结构实现高效线程安全队列,具有出色的并发性能、灵活的阻塞与非阻塞操作,以及适用于生产者和消费者模式的能力,此外,LinkedBlockingQueue还具有高度的可伸缩性,能够在多线程环…

剑指offer——替换空格

目录 1. 题目描述与背景1.1 题目描述1.2 背景 2. 一般思路 (时间复杂度为O(n))3. 分析4. 完整代码4.1 标准答案 1. 题目描述与背景 1.1 题目描述 请实现一个函数,把字符串中的每个空格替换成 “ %20 ” 。例如:输入“ we are hap…

【Linux】学习-动静态库

动静态库 头文件与库的区别 头文件一般而言,是声明和宏定义。头文件是在预处理阶段使用的 库文件是已经编译好的二进制代码。是一种目标文件,库文件是在链接阶段使用的 对于头文件和库我们可以这样理解,就是头文件提供的是一个函数的声明&…

【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-Turbo编码原理

目录 Turbo码:无线通信中的革命性技术 引言 一、Turbo码的基本原理 1.1 卷积码基础: 1.2 Turbo码的构造: 1.2.1 分量编码器 1.2.2 随机交织器 1.2.3 穿刺和复接单元 1.3 编码器结构的重要性和影响 1.4 迭代解码: 1.4.1 …

C#使用RabbitMQ-5_主题模式(主题交换机)

简介 主题模式允许发送者根据主题发布消息,而订阅者可以订阅特定的主题。 在主题模式中,生产者发送的消息被发送到一个交换机(Exchange),该交换机根据消息的路由键(Routing Key)和绑定&#x…

springcloud分布式架构网上商城源码和论文

首先,论文一开始便是清楚的论述了系统的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了系统的需求基础上需要进一步地设计系统,主要包罗软件架构模式、整体功能模块、数据库设计。本项…

React18原理: Fiber架构下的单线程CPU调度策略

概述 React 的 Fiber 架构, 它的整个设计思想就是去参考CPU的调度策略CPU现在都是多核多进程的,重点研究的是 CPU是单核单线程,它是如何调度的?为什么要去研究单线程的CPU? 浏览器中的JS它是单线程的JS 的执行线程和浏览器的渲染GUI 是互斥…

小兔鲜项目网页版

头部模块 <!-- 头部模块 --><header><!-- 快捷菜单模块 --><div class"xtx-shortcut"><!-- 版心的盒子 --><nav class"container"><ul class"fr"><li><a href"#">请先登录<…

前端JavaScript篇之对象继承的方式有哪些?

目录 对象继承的方式有哪些&#xff1f;1. 原型链继承2. 借用构造函数3. 组合继承4. 原型式继承5. 寄生式组合继承 对象继承的方式有哪些&#xff1f; 1. 原型链继承 当使用原型链继承时&#xff0c;子类型的原型对象被设置为父类型的一个实例。这意味着子类型通过其原型可以…

Python爬虫——请求库安装

目录 1.打开Anaconda Prompt 创建环境2.安装resuests3.验证是否安装成功4.安装Selenium5.安装ChromeDriver5.1获取chrom的版本5.1.1点击浏览器右上三个点5.1.2点击设置5.1.3下拉菜单&#xff0c;点击最后关于Chrome&#xff0c;获得其版本 5.2 打开网址 [chromedriver](https:/…

ADMap:Anti-disturbance framework for reconstructing online vectorized HD map

参考代码&#xff1a;ADMap 动机与出发点 局部地图构建算法在实际中会遇到部分车道线偏离的或是错误的情况&#xff0c;这往往是全局信息获取上存在欠缺&#xff0c;毕竟地图元素的回归很依赖于全局信息的获取。那么从特征提取、attention layer设计和loss构建上可以做一些工作…

qt-C++笔记之判断一个QLabel上有没有load图片

qt-C笔记之判断一个QLabel上有没有load图片 code review! 在Qt框架中&#xff0c;QLabel是用来显示文本或者图片的一个控件。如果你想判断一个QLabel控件上是否加载了图片&#xff0c;你可以检查它的pixmap属性。pixmap属性会返回一个QPixmap对象&#xff0c;如果没有图片被加…

基于springboot广场舞团管理系统源码和论文

随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&#xf…

Linux中常用的工具

软件安装 yum 软件包 在Linux中&#xff0c;软件包是一种预编译的程序集合&#xff0c;通常包含了用户需要的应用程序、库、文档和其他依赖项。 软件包管理工具是用于安装、更新和删除这些软件包的软件。常见的Linux软件包管理工具包括APT&#xff08;Advanced Packaging To…

吉他学习:C大调第一把位音阶,四四拍曲目练习 小星星,练习的目的

第十三课 C大调第一把位音阶https://m.lizhiweike.com/lecture2/29364198 第十四课 四四拍曲目练习 小星星https://m.lizhiweike.com/lecture2/29364131 C大调第一把位音阶非常重要,可以多练习&#x

耳机壳UV树脂制作耳机壳的工艺流程是什么?

使用耳机壳UV树脂制作耳机壳的工艺流程如下&#xff1a; 获取耳模&#xff1a;首先&#xff0c;需要获取用户的耳模。这通常是通过使用一种柔软的材料注入到用户的耳朵中&#xff0c;然后取出并用来制作耳机的内芯。选择UV树脂&#xff1a;接下来&#xff0c;需要选择合适的UV…

二十、K8S-1-权限管理RBAC详解

目录 k8s RBAC 权限管理详解 一、简介 二、用户分类 1、普通用户 2、ServiceAccount 三、k8s角色&角色绑定 1、授权介绍&#xff1a; 1.1 定义角色&#xff1a; 1.2 绑定角色&#xff1a; 1.3主体&#xff08;subject&#xff09; 2、角色&#xff08;Role和Cluster…

【MySQL】MySQL表的增删改查(进阶)

MySQL表的增删改查&#xff08;进阶&#xff09; 1. 数据库约束1.1 约束类型1.2 NULL约束1.3 UNIQUE:唯一约束1.4 DEFAULT&#xff1a;默认值约束1.5 PRIMARY KEY&#xff1a;主键约束1.6 FOREIGN KEY&#xff1a;外键约束:1.7 CHECK约束&#xff08;了解&#xff09; 2. 表的设…

emmet语法

一.html $排序 直接.dem或#two是默认div 内容可写{}里 二.css 直接写首字母 三.格式化 一次&#xff08;右键格式化&#xff09; 永久

最佳视频转换器软件:2024年视频格式转换的选择

我们生活在一个充满数字视频的世界&#xff0c;但提供的内容远不止您最喜欢的流媒体服务目录。虽然我们深受喜爱的设备在播放各种自制和下载的视频文件方面变得越来越好&#xff0c;但在很多情况下您都需要从一种格式转换为另一种格式。 经过大量测试&#xff0c; 我们尝试过…