【MySQL】-12 MySQL索引(上篇MySQL索引类型前置-2-高性能的索引策略)

MySQL索引-高性能的索引策略

    • 3 高性能的索引策略
      • 3.1 独立的列
      • 3.2 前缀索引和索引选择性
      • 3.3 多列索引
      • 3.4 选择合适的索引列顺序
      • 3.5 聚簇索引(Clustered Indexes)
        • 3.5.1 InnoDB和MyISAM的数据布局的比较
        • 3.5.2 按primary key的顺序插入行(InnoDB)
      • 3.6 覆盖索引(Covering Indexes)
      • 3.7 利用索引进行排序
      • 3.8 索引与加锁

3 高性能的索引策略

3.1 独立的列

独立的列是指索引列不能是表达式的一部分,也不是是函数的参数。例如以下两个查询无法使用索引:

1)表达式:  select actor_id from sakila.actor where actor_id+1=5;
2)函数参数:select ... where TO_DAYS(CURRENT_DATE) - TO_DAYS(date_col)<=10;

3.2 前缀索引和索引选择性

通常可以索引开始的部分字符,这样可以大大节约索引空间,从而提高索引效率。但这样也会降低索引的选择性。索引的选择性是指,不重复的索引值(基数)和数据表中的记录总数(#T)的比值,范围从1/#T之间。

索引的选择性越高则查询效率越高,因为选择性高的索引可以让MYSQL在查找时过滤掉更多的行。

唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

一般情况下某个前缀的选择性也是足够高的,足以满足查询性能。对于BLOB、TEXT或者很长的VARCHAR类型的列,必须使用前缀索引,因为MYSQL不允许索引这些列的完整长度。

决窍在于要选择足够长的前缀以保证较高的选择性,同时又不能太长(以便节约空间)。前缀应该足够长,以使得前缀索引的选择性接近于索引整个列。换句话说,前缀的“基数”应该接近于完整列的“基数”。

为了决定前缀的合适长度,需要找到最常见的值的列表,然后和最常见的前缀列表进行比较。例如以下查询:

select count(*) as cnt,city from sakila.city_demo group by city order by cnt desc limit 10;
select count(*) as cnt,left(city,7) as perf  from sakila.city_demo group by city order by cnt desc limit 10;

直到这个前缀的选择性接近完整列的选择性。

计算合适的前缀长度的另一个方法就是计算完整列的选择性,并使前缀的选择性接近于完整列的选择性,如下:

select  count(distinct city)/count(*) from sakila.city_demo;
select  count(distinct left(city,7))/count(*) from sakila.city_demo;

前缀索引是一种能使索引更小、更快的有效办法,但另一方面也有其缺点:MYSQL无法使用前缀索引做order by和group by,也无法使用前缀索引做覆盖扫描。

3.3 多列索引

一个多列索引与多个列索引MYSQL在解析执行上是不一样的,如果在explain中看到有索引合并,应该好好检查一下查询的表和结构是不是已经最优。

3.4 选择合适的索引列顺序

对于如何选择索引的顺序有一个经验法则:将选择性最高的列放在索引最前列。

当不需要考虑排序和分组时,将选择性最高的列放在前面通常是最好的。然后,性能不只是依赖于所有索引列的选择性(整体基数),也和查询条件的具体值有关,也就是和值的分布有关。

这和前面介绍的选择前缀的长度需要考虑的地方一样。可能需要根据那些运行频率最高的查询来调整索引列的顺序,让这种情况下索引的选择性最高。

使用经验法则要注意不要假设平均情况下的性能也能代表特殊情况下的性能,特殊情况可能会摧毁整个应用的性能(当使用前缀索引时,在某些条件值的基数比正常值高的时候)。

3.5 聚簇索引(Clustered Indexes)

聚簇索引保证关键字的值相近的元组存储的物理位置也相同(所以字符串类型不宜建立聚簇索引,特别是随机字符串,会使得系统进行大量的移动操作),且一个表只能有一个聚簇索引。

因为由存储引擎实现索引,所以,并不是所有的引擎都支持聚簇索引。目前,只有solidDB和InnoDB支持。

聚簇索引的结构大致如下:

叶子页包含了行的全部数据,但是节点页只包含了索引列。
二级索引叶子节点保存的不是指行的物理位置的指针,而是行的主键值。
这意味着通过二级索引查找行,存储引擎需要找到二级索引的叶子节点获取对应的主键值,然后根据这个值去聚簇索引中查找到对应的行。
这里做了重复的工作:两次B-TREE查找而不是一次。

在这里插入图片描述

注:叶子页面包含完整的元组,而内节点页面仅包含索引的列(索引的列为整型)。一些DBMS允许用户指定聚簇索引,但是MySQL的存储引擎到目前为止都不支持。

InnoDB对主键建立聚簇索引。如果你不指定主键,InnoDB会用一个具有唯一且非空值的索引来代替。如果不存在这样的索引,InnoDB会定义一个隐藏的主键,然后对其建立聚簇索引。一般来说,DBMS都会以聚簇索引的形式来存储实际的数据,它是其它二级索引的基础。

3.5.1 InnoDB和MyISAM的数据布局的比较

为了更加理解聚簇索引和非聚簇索引,或者primary索引和second索引(MyISAM不支持聚簇索引),来比较一下InnoDB和MyISAM的数据布局,对于如下表:

CREATE TABLE layout_test (
   col1 int NOT NULL,
   col2 int NOT NULL,
   PRIMARY KEY(col1),
   KEY(col2)
);

假设主键的值位于1—10,000之间,且按随机顺序插入,然后用OPTIMIZE TABLE进行优化。col2随机赋予1—100之间的值,所以会存在许多重复的值。

  • (1) MyISAM的数据布局
    其布局十分简单,MyISAM按照插入的顺序在磁盘上存储数据,如下:

在这里插入图片描述

注:左边为行号(row number),从0开始。因为元组的大小固定,所以MyISAM可以很容易的从表的开始位置找到某一字节的位置。
MyISAM建立的primary key的索引结构大致如下:
在这里插入图片描述

注:MyISAM不支持聚簇索引,索引中每一个叶子节点仅仅包含行号(row number),且叶子节点按照col1的顺序存储。
来看看col2的索引结构:

在这里插入图片描述

实际上,在MyISAM中,primary key和其它索引没有什么区别。Primary key仅仅只是一个叫做PRIMARY的唯一,非空的索引而已,叶子节点按照col2的顺序存储。

(2) InnoDB的数据布局
InnoDB按聚簇索引的形式存储数据,所以它的数据布局有着很大的不同。它存储表的结构大致如下:

在这里插入图片描述

注:聚簇索引中的每个叶子节点包含primary key的值,事务ID和回滚指针(rollback pointer)——用于事务和MVCC,和余下的列(如col2)。

相对于MyISAM,InnoDB的二级索引与聚簇索引有很大的不同。InnoDB的二级索引的叶子包含primary key的值,而不是行指针(row pointers),这样的策略减小了移动数据或者数据页面分裂时维护二级索引的开销,因为InnoDB不需要更新索引的行指针。其结构大致如下:

在这里插入图片描述

聚簇索引和非聚簇索引表的对比:

在这里插入图片描述

3.5.2 按primary key的顺序插入行(InnoDB)

如果你用InnoDB,而且不需要特殊的聚簇索引,一个好的做法就是使用代理主键(surrogate key)——独立于你的应用中的数据。最简单的做法就是使用一个AUTO_INCREMENT的列,这会保证记录按照顺序插入,而且能提高使用primary key进行连接的查询的性能。应该尽量避免随机的聚簇主键,例如,字符串主键就是一个不好的选择,它使得插入操作变得随机。

3.6 覆盖索引(Covering Indexes)

覆盖索引是一种非常强大的工具,能大大提高查询性能。设计优秀的索引应该考虑到整个查询,而不单单的where条件部分。

索引确实是一种查找数据的高效方式,但是MYSQL也可以使用索引来直接获取列的数据,这样就不再需要读取数据行。索引的叶子节点中已经包含要查询的数据,那么就没有必要再回表查询了,如果索引包含满足查询的所有数据,就称为覆盖索引。

只需要读取索引而不用读取数据有以下一些优点:

(1)索引项通常比记录要小,所以MySQL访问更少的数据;
(2)索引都按值的大小顺序存储,相对于随机访问记录,需要更少的I/O;
(3)大多数据引擎能更好的缓存索引。比如MyISAM只缓存索引。
(4)覆盖索引对于InnoDB表尤其有用,因为InnoDB使用聚集索引组织数据,如果二级索引中包含查询所需的数据,就不再需要在聚集索引中查找了。

覆盖索引不能是任何索引,只有B-TREE索引存储相应的值。而且不同的存储引擎实现覆盖索引的方式都不同,并不是所有存储引擎都支持覆盖索引(Memory和Falcon就不支持)。

对于索引覆盖查询(index-covered query),使用EXPLAIN时,可以在Extra一列中看到“Using index”。例如,在sakila的inventory表中,有一个组合索引(store_id,film_id),对于只需要访问这两列的查询,MySQL就可以使用索引,如下:

mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G
*************************** 1. row ***************************
           id: 1
 select_type: SIMPLE
        table: inventory
         type: index
possible_keys: NULL
          key: idx_store_id_film_id
      key_len: 3
          ref: NULL
         rows: 5007
        Extra: Using index
1 row in set (0.17 sec)

在大多数引擎中,只有当查询语句所访问的列是索引的一部分时,索引才会覆盖。但是,InnoDB不限于此,InnoDB的二级索引在叶子节点中存储了primary key的值。因此,sakila.actor表使用InnoDB,而且对于是last_name上有索引,所以,索引能覆盖那些访问actor_id的查询,如:
(同时查询actor_id[主键]与last_name[索引字段])

mysql> EXPLAIN SELECT actor_id, last_name
    -> FROM sakila.actor WHERE last_name = 'HOPPER'\G
*************************** 1. row ***************************
           id: 1
 select_type: SIMPLE
        table: actor
         type: ref
possible_keys: idx_actor_last_name
          key: idx_actor_last_name
      key_len: 137
          ref: const
         rows: 2
        Extra: Using where; Using index

3.7 利用索引进行排序

MySQL中,有两种方式生成有序结果集:一是使用filesort,二是按索引顺序扫描。

如果explain出来的type列的值为“index”,则说明MYSQL使用了索引扫描来做排序。利用索引进行排序操作是非常快的,因为只需要从一条索引记录移动到紧接着的下一条记录。

但如果索引不能覆盖查询所需的全部列,那就不得不每扫描一条索引记录就回表查询一次对应的行,这基本上都是随机IO,因此按索引顺序读取的速度通常要比顺序地全表扫描慢,尤其是在IO密集型的工作负载时。

而且可以利用同一索引同时进行查找和排序操作。当索引的顺序与ORDER BY中的列顺序相同且所有的列是同一方向(全部升序或者全部降序)时,可以使用索引来排序。如果查询是连接多个表,仅当ORDER BY中的所有列都是第一个表的列时才会使用索引。其它情况都会使用filesort文件排序。

create table actor(
actor_id int unsigned NOT NULL AUTO_INCREMENT,
name      varchar(16) NOT NULL DEFAULT '',
password        varchar(16) NOT NULL DEFAULT '',
PRIMARY KEY(actor_id),
 KEY     (name)
) ENGINE=InnoDB
insert into actor(name,password) values('cat01','1234567');
insert into actor(name,password) values('cat02','1234567');
insert into actor(name,password) values('ddddd','1234567');
insert into actor(name,password) values('aaaaa','1234567');
 
mysql> explain select actor_id from actor order by actor_id \G
*************************** 1. row ***************************
           id: 1
 select_type: SIMPLE
        table: actor
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 4
        Extra: Using index
1 row in set (0.00 sec)
 
mysql> explain select actor_id from actor order by password \G
*************************** 1. row ***************************
           id: 1
 select_type: SIMPLE
        table: actor
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 4
        Extra: Using filesort
1 row in set (0.00 sec)
 
mysql> explain select actor_id from actor order by name \G
*************************** 1. row ***************************
           id: 1
 select_type: SIMPLE
        table: actor
         type: index
possible_keys: NULL
          key: name
      key_len: 18
          ref: NULL
         rows: 4
        Extra: Using index
1 row in set (0.00 sec)

当MySQL不能使用索引进行排序时,就会利用自己的排序算法(快速排序算法)在内存(sort buffer)中对数据进行排序,如果内存装载不下,它会将磁盘上的数据进行分块,再对各个数据块进行排序,然后将各个块合并成有序的结果集(实际上就是外排序,使用临时表)。

对于filesort,MySQL有两种排序算法。

  • (1)两次扫描算法(Two passes)
    实现方式是先将需要排序的字段和可以直接定位到相关行数据的指针信息取出,然后在设定的内存(通过参数sort_buffer_size设定)中进行排序,完成排序之后再次通过行指针信息取出所需的Columns。

注:该算法是4.1之前采用的算法,它需要两次访问数据,尤其是第二次读取操作会导致大量的随机I/O操作。另一方面,内存开销较小。

  • (2)一次扫描算法(single pass)
    该算法一次性将所需的Columns全部取出,在内存中排序后直接将结果输出。

注:从 MySQL 4.1 版本开始使用该算法。它减少了I/O的次数,效率较高,但是内存开销也较大。如果我们将并不需要的Columns也取出来,就会极大地浪费排序过程所需要的内存。

在 MySQL 4.1 之后的版本中,可以通过设置 max_length_for_sort_data 参数来控制 MySQL 选择第一种排序算法还是第二种。

当取出的所有大字段总大小大于 max_length_for_sort_data 的设置时,MySQL 就会选择使用第一种排序算法,反之,则会选择第二种。为了尽可能地提高排序性能,我们自然更希望使用第二种排序算法,所以在 Query 中仅仅取出需要的 Columns 是非常有必要的。

当对连接操作进行排序时,如果ORDER BY仅仅引用第一个表的列,MySQL对该表进行filesort操作,然后进行连接处理,此时,EXPLAIN输出“Using filesort”;否则,MySQL必须将查询的结果集生成一个临时表,在连接完成之后进行filesort操作,此时,EXPLAIN输出“Using temporary;Using filesort”。

在这里插入图片描述

3.8 索引与加锁

索引对于InnoDB非常重要,因为它可以让查询锁更少的元组。这点十分重要,因为MySQL 5.0中,InnoDB直到事务提交时才会解锁。

有两个方面的原因:首先,即使InnoDB行级锁的开销非常高效,内存开销也较小,但不管怎么样,还是存在开销。其次,对不需要的元组的加锁,会增加锁的开销,降低并发性。

InnoDB仅对需要访问的元组加锁,而索引能够减少InnoDB访问的元组数。但是,只有在存储引擎层过滤掉那些不需要的数据才能达到这种目的。

一旦索引不允许InnoDB那样做(即达不到过滤的目的),MySQL服务器只能对InnoDB返回的数据进行WHERE操作,此时,已经无法避免对那些元组加锁了:InnoDB已经锁住那些元组,服务器无法解锁了。

来看个例子:
create table actor(
actor_id int unsigned NOT NULL AUTO_INCREMENT,
name      varchar(16) NOT NULL DEFAULT '',
password        varchar(16) NOT NULL DEFAULT '',
PRIMARY KEY(actor_id),
 KEY     (name)
) ENGINE=InnoDB
insert into actor(name,password) values('cat01','1234567');
insert into actor(name,password) values('cat02','1234567');
insert into actor(name,password) values('ddddd','1234567');
insert into actor(name,password) values('aaaaa','1234567');
SET AUTOCOMMIT=0;
BEGIN;
SELECT actor_id FROM actor WHERE actor_id < 4
AND actor_id <> 1 FOR UPDATE;
 该查询仅仅返回2---3的数据,实际已经对1---3的数据加上排它锁了。InnoDB锁住元组1是因为MySQL的查询计划仅使用索引进行范围查询(而没有进行过滤操作,WHERE中第二个条件已经无法使用索引了):
mysql> EXPLAIN SELECT actor_id FROM test.actor
    -> WHERE actor_id < 4 AND actor_id <> 1 FOR UPDATE \G
*************************** 1. row ***************************
           id: 1
 select_type: SIMPLE
        table: actor
         type: index
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 4
        Extra: Using where; Using index
1 row in set (0.00 sec)
 
mysql>

表明存储引擎从索引的起始处开始,获取所有的行,直到actor_id<4为假,服务器无法告诉InnoDB去掉元组1。
为了证明row 1已经被锁住,我们另外建一个连接,执行如下操作:

SET AUTOCOMMIT=0;
BEGIN;
SELECT actor_id FROM actor WHERE actor_id = 1 FOR UPDATE;

该查询会被挂起,直到第一个连接的事务提交释放锁时,才会执行(这种行为对于基于语句的复制(statement-based replication)是必要的)。

如上所示,当使用索引时,InnoDB会锁住它不需要的元组。更糟糕的是,如果查询不能使用索引,MySQL会进行全表扫描,并锁住每一个元组,不管是否真正需要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/381507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux 自动定时清理缓存

文章目录 1&#xff0c;查看内存占用情况&#xff1a;1.1、free和available的区别&#xff1f;1.2、交换分区的作用&#xff1f; 2&#xff0c;手动清理命令3&#xff0c;定时自动清理3.1&#xff0c;创建文件夹3.2&#xff0c;新建文件cleanBuffer.sh3.3&#xff0c;添加内容3…

Transformer的PyTorch实现之若干问题探讨(二)

在《Transformer的PyTorch实现之若干问题探讨&#xff08;一&#xff09;》中探讨了Transformer的训练整体流程&#xff0c;本文进一步探讨Transformer训练过程中teacher forcing的实现原理。 1.Transformer中decoder的流程 在论文《Attention is all you need》中&#xff0…

统一数据格式返回,统一异常处理

目录 1.统一数据格式返回 2.统一异常处理 3.接口返回String类型问题 1.统一数据格式返回 添加ControllerAdvice注解实现ResponseBodyAdvice接口重写supports方法&#xff0c;beforeBodyWrite方法 /*** 统一数据格式返回的保底类 对于一些非对象的数据的再统一 即非对象的封…

【资料分享】基于单片机大气压监测报警系统电路方案设计、基于飞思卡尔的无人坚守点滴监控自动控制系统设计(程序,原理图,pcb,文档)

基于单片机大气压监测报警系统电路方案设计 功能&#xff1a;实现的是大气压检测报警系统&#xff0c;可以通过传感器实时检测当前大气压值&#xff0c;可以设定大气压正常范围&#xff0c;当超过设定范围进行报警提示。 资料&#xff1a;protues仿真&#xff0c;程序&#x…

计算机二级C语言备考学习记录

一、C语言程序的结构 1.程序的构成&#xff0c;main函数和其他函数。 程序是由main函数和其他函数构成main作为主函数&#xff0c;一个C程序里只有一个main函数其他函数可以分为系统函数和用户函数&#xff0c;系统函数为编译系统提供&#xff0c;用户函数由用户自行编写 2.…

[职场] 抖音运营SOP全攻略 #微信#职场发展

抖音运营SOP全攻略 1.养号的步骤 注册一机—卡一号&#xff0c;在注册的前5天只看视频不发视频&#xff0c;单日观看视频的时长不少于30分钟。观看过程中正常评论点赞互动&#xff0c;关注5-10个头部大号。关注20个二三十万至百万的竟品账号。 粉丝量低于1W的账号下不要留下…

Compose之Slider全面解析

JetPack Compose系列&#xff08;14&#xff09;—Slider Slider&#xff0c;即拖动条&#xff0c;默认包含了一个滑块和一个滑动轨道。允许用户在一个数值范围内进行选择。 按照惯例&#xff0c;先观察其构造函数&#xff1a; Composable fun Slider(value: Float,onValueCh…

Debezium发布历史120

原文地址&#xff1a; https://debezium.io/blog/2022/04/07/read-only-incremental-snapshots/ 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. Read-only Incremental Snapshots for MySQL April 7, 2022 by K…

【Python中Selenium元素定位的各种方法】

1、元素定位操作&#xff1a; 2、创建浏览器驱动操作&#xff0c;导入By模块&#xff1a; from selenium import webdriver # 用于界面与浏览器互动 from selenium.webdriver.common.by import By # 用于元素定位 driver webdriver.Chrome() # 调用Chrome类&#xff0c;创…

C++ 贪心 区间问题 区间选点

给定 N 个闭区间 [ai,bi] &#xff0c;请你在数轴上选择尽量少的点&#xff0c;使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量。 位于区间端点上的点也算作区间内。 输入格式 第一行包含整数 N &#xff0c;表示区间数。 接下来 N 行&#xff0c;每行包含两…

.NET高级面试指南专题六【线程安全】5种方法解决线程安全问题

前言 多线程编程相对于单线程会出现一个特有的问题&#xff0c;就是线程安全的问题。所谓的线程安全&#xff0c;就是如果你的代码所在的进程中有多个线程在同时运行&#xff0c;而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的&#xff0c;而且…

探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战

开篇部分&#xff1a;人工智能、深度神经网络与内存计算的交汇 在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;已经成为科技领域的一股强大力量&#xff0c;而深度神经网络&#xff08;DNN&#xff09;则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作…

视觉开发板—K210自学笔记(二)

视觉开发板—K210 一、开发之前的准备 工欲善其事必先利其器。各位同学先下载下面的手册&#xff1a; 1.Sipeed-Maix-Bit 资料下载&#xff1a;https://dl.sipeed.com/shareURL/MAIX/HDK/Sipeed-Maix-Bit/Maix-Bit_V2.0_with_MEMS_microphone 2.Sipeed-Maix-Bit 规格书下载&…

解决dockor安装nginx提示missing signature key的问题

问题描述 使用dockor安装nginx拉取nginx的时候提示key丢失问题 问题定位 由于dockor版本低导致 问题解决 卸载重新安装最新版本dockor 解决步骤 1. 卸载旧版本的Docker&#xff1a; sudo yum remove docker docker-common docker-selinux docker-engine 2. 安装依赖包&am…

C++入门学习(二十六)for循环

for (初始化; 条件; 递增/递减) { // 代码块 } 打印1~10&#xff1a; #include <iostream> using namespace std; int main() { for (int i 1; i < 10; i) { cout <<i<<endl; } return 0; } 打印九九乘法表&#xff1a; #include <iostream…

Git版本与分支

目录 一、Git 二、配置SSH 1.什么是SSH Key 2.配置SSH Key 三、分支 1.为什么要使用分支 2.四个环境及特点 3.实践操作 1.创建分支 2.查看分支 3.切换分支 4.合并分支 5.删除分支 6.重命名分支 7.推送远程分支 8.拉取远程分支 9.克隆指定分支 四、版本 1.什…

春晚刘谦魔术——约瑟夫环

昨晚&#xff0c;刘谦在春晚上表演了一个魔术&#xff0c;通过对四张撕成两半的纸牌连续操作&#xff0c;最终实现了纸牌的配对。 这个魔术虽然原理不是很难&#xff0c;但是通过刘谦精湛的表演还是让这个魔术产生了不错的效果&#xff08;虽然我感觉小尼的效果更不错&#xff…

【北邮鲁鹏老师计算机视觉课程笔记】02 filter

1 图像的类型 二进制图像&#xff1a; 灰度图像&#xff1a; 彩色图像&#xff1a; 2 任务&#xff1a;图像去噪 噪声点让我们看得难受是因为噪声点与周边像素差别很大 3 均值 滤波核 卷积核 4 卷积操作 对应相乘再累加起来 卷积核记录了权值&#xff0c;把权值套到要卷积…

2023年总结

人们总说时间会改变一切&#xff0c;但事实上你得自己来。 今年开始给自己的时间读书、工作、生活都加上一个2.0的release版本号&#xff0c;相比过去的一年还是有很多进步的。 就跟git commit一样&#xff0c;一步一步提交优化&#xff0c;年底了发个版本。用李笑来的话说&am…

【洛谷题解】P1075 [NOIP2012 普及组] 质因数分解

题目链接&#xff1a;[NOIP2012 普及组] 质因数分解 - 洛谷 题目难度&#xff1a;入门 涉及知识点&#xff1a;枚举&#xff08;优化&#xff09; 题意&#xff1a; 输入样例&#xff1a;21 输出样例&#xff1a;7 分析&#xff1a;枚举到小因数&#xff0c;再除a&#x…