数据结构——单向链表和双向链表的实现(C语言版)

目录

前言

1. 链表

1.1 链表的概念及结构

1.2 链表的分类

2. 单链表接口实现

2.1 数据结构设计与接口函数声明

2.2 创建结点,打印,查找

2.3 尾插,头插,尾删,头删

2.4 插入或删除

2.4.1在指定位置后

2.4.2在指定位置前

2.5 销毁链表

3. 双向带头循环链表

3.1 数据结构设计与接口函数声明

3.2 初始化,销毁,打印,动态创建结点

3.3 尾插,头插,尾删,头删

3.4 查找,插入和删除

4.链表和顺序表的区别

5. 源代码

5.1 单链表

(1)SList.h

(2)SList.c

(3)SLtest.c

5.2 双向链表

(1)Linked LIst.h

(2)Linked List.c

(3)Ltest.c

总结


前言

这篇文章关于链表的介绍,还有单向链表和双向链表的C语言实现,内容干货满满,建议边看边上手敲代码!


1. 链表

1.1 链表的概念及结构

概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。

 如下图所示:

注意:

  1. 从上图可看出,链式结构逻辑上是连续的,但在物理上不一定连续的,地址存放分布不均。
  2. 现实中的节点一般都是从堆上申请出来的。
  3. 从堆上申请的空间,是按照一定策略来分配的,两次申请的空间可能连续,也可能不连续。

1.2 链表的分类

实际中链表有这三种分法,单向或者双向,带头或不带头,循环或者非循环。

  1. 单向或双向
  2. 带头或者不带头
  3. 循环或者非循环

虽然有这么多的链表结构,但是我们实际中最常用还是两种结构

  1. 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。
  2.  带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了。

2. 单链表接口实现

在实现接口时,需要创建三个文件,分别是SList.hSList.cSLtest.c这三个文件,第一个是写入单链表数据结构设计和接口函数声明来串联三个文件,第二个是完成各个接口函数内部代码实现,第三个是来测试各个接口功能情况。

2.1 数据结构设计与接口函数声明

单链表结构体中有存储一个数据的变量,但与顺序表的不同之处,是使用指针联系着下一个结点,所以在创建个相同结构体的指针next。单链表只需要知道头结点的结构体指针就可以进行各种接口的实现,所以不用创建一个初始化接口,创建一个结构体指针就可以。

typedef int SLTDataType;

typedef struct SListNode
{
	SLTDataType data;
	struct SListNode* next;
}SLTNode;

//动态申请一个结点
SLTNode* BuyListNode(SLTDataType x);
//单链表打印
void SListPrint(SLTNode* phead);
//单链表尾插
void SListPushBack(SLTNode** pphead, SLTDataType x);
//单链表头插
void SListPushFront(SLTNode** pphead, SLTDataType x);
//单链表尾删
void SListPopBack(SLTNode** pphead);
//单链表头删
void SListPopFront(SLTNode** pphead);
//单链表查找
SLTNode* SListFind(SLTNode* phead, SLTDataType x);
//在pos位置之前去插入一个节点
void SListInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
// 在pos位置后面插入
void SListInsertAfter(SLTNode* pos, SLTDataType x);
//删除pos位置的节点
void SListErase(SLTNode** pphead, SLTNode* pos);
//删除pos位置后一个节点
void SListEraseAfter(SLTNode** pphead, SLTNode* pos);
//单链表销毁
void SListDestory(SLTNode** pphead);

2.2 创建结点,打印,查找

 创建新结点是为了后面接口实现做准备。

SLTNode* BuyListNode(SLTDataType x)
{   
    //动态申请新结点
	SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));
	if (newnode == NULL)
	{   //可能开辟内存失败,加上判断,增强代码的健壮性
		printf("malloc fail\n");
		exit(-1);
	}

	newnode->data = x;
	newnode->next = NULL;
	return newnode;
}

打印链表中的内容,用的是while循环,判断条件是cur指针不为空。

void SListPrint(SLTNode* phead)
{
	SLTNode* cur = phead;
	while (cur != NULL)
	{
		printf("%d->", cur->data);
		cur = cur->next;
	}
	printf("NULL\n");
}

assert是断言,判断phead是否为空结点,用while循环遍历整个链表。

SListNode* SListFind(SLTNode* phead, SLTDataType x)
{
	assert(phead);
	SLTNode* cur = phead;
	while (cur)
	{
		if (cur->data == x)
		{
			return cur;
		}
		else
		{
			cur = cur->next;
		}
	}
	return NULL;
}

2.3 尾插,头插,尾删,头删

因为只需要知道指向头结点的指针变量,就可以进行操作,但是第一次我们创建的头结点为空指针,尾插的时候如果传入一级指针在尾插函数内部修改头节点的值,无法影响头结点,因为尾插函数内的头结点的一份临时拷贝,即形参,改变形参的值是无法影响实参的值,所以要传入二级指针,通过指针变量的指针修改一级指针的值。故之后关于头结点的删除或者插入,都需要传二级指针,这是链表实现中较难理解的点。

void SListPushBack(SLTNode** pphead, SLTDataType x)
{
	assert(pphead);
	SLTNode* newnode = BuyListNode(x);
    //头结点为空时,直接赋值
	if (*pphead == NULL)
	{
		*pphead = newnode;
	}
	else
	{
		//找到尾节点
		SLTNode* tail = *pphead;
		while (tail->next != NULL)
		{
			tail = tail->next;
		}
		tail->next = newnode;
	}
}

我们写一个测试函数,测试一下尾插函数的功能。之后的测试函数,只写全局函数Test,不展示main函数的部分。

#include "SLinked list.h"

void TestSlist1()
{
	SLTNode* plist = NULL;

	SListPushBack(&plist, 1);
	SListPushBack(&plist, 2);
	SListPushBack(&plist, 3);
	SListPushBack(&plist, 4);
	SListPrint(plist);
}

int main()
{
	TestSlist1();
	return 0;
}

输出结果:

头插较为简单,只需要创建一个新结点,新结点的next指针指向头结点,再把头结点指向新结点。

void SListPushFront(SLTNode** pphead, SLTDataType x)
{
	assert(pphead);
	SLTNode* newnode = BuyListNode(x);

	newnode->next = *pphead;
	*pphead = newnode;
}

再写一个测试函数:

void TestSlist2()
{
	SLTNode* plist = NULL;
	SListPushFront(&plist, 1);
	SListPushFront(&plist, 2);
	SListPushFront(&plist, 3);
	SListPushFront(&plist, 4);

	SListPrint(plist);
}

输出的结果:

尾删要分情况,分为链表内有一个节点还是两个结点及以上。如果链表内只有一个结点直接释放头结点,并将其置为空指针,如果是两个节点及以上,需要找到尾结点的位置,用while循环遍历链表,新建一个tail指针,当tail的next指针为空时,便找到尾结点,然后进行释放操作。

void SListPopBack(SLTNode** pphead)
{
	assert(pphead);
	assert(*pphead != NULL);

	if ((*pphead)->next == NULL)
	{
		//1. 一个节点
		free(*pphead);
		*pphead = NULL;
	}
	else
	{	
		//2. 两个及以上的节点
		SLTNode* tail = *pphead;
		while (tail->next->next)
		{
			tail = tail->next;
		}
		free(tail->next);
		tail->next = NULL;
	}
}

在之前Test1函数上稍加改动:

void TestSlist1()
{
	SLTNode* plist = NULL;

	SListPushBack(&plist, 1);
	SListPushBack(&plist, 2);
	SListPushBack(&plist, 3);
	SListPushBack(&plist, 4);
	SListPrint(plist);

	SListPopBack(&plist);
	SListPopBack(&plist);
	SListPopBack(&plist);
	SListPrint(plist);
}

输出的结果:

但是如果你调用尾删次数超过链表存储数据个数,就会报错。所以调用尾删函数需注意。

头删函数只需在创建一个next指针,并赋值为头结点的下一个结点,释放头结点,再赋值。

void SListPopFront(SLTNode** pphead)
{
	assert(pphead);
	assert(*pphead != NULL);

	SLTNode* next = (*pphead)->next;
	free(*pphead);
	*pphead = next;
}

同理,这次在Test2函数上进行改动即可。

void TestSlist2()
{
	SLTNode* plist = NULL;
	SListPushFront(&plist, 1);
	SListPushFront(&plist, 2);
	SListPushFront(&plist, 3);
	SListPushFront(&plist, 4);
	SListPrint(plist);

	SListPopFront(&plist);
	SListPopFront(&plist);
	SListPopFront(&plist);
	SListPopFront(&plist);
	SListPrint(plist);
}

输出的结果:

2.4 插入或删除

一般是在指定位置后插入或删除,这是因为单链表的结点只有下一个结点的地址,如果想要在指定位置之前插入,需要从头结点开始遍历,消耗时间。

2.4.1在指定位置后

插入操作:

// 在pos位置后面插入,这个更适合单链表
void SListInsertAfter(SLTNode* pos, SLTDataType x)
{
	assert(pos);
	SLTNode* newnode = BuyListNode(x);
	if (newnode == NULL)
	{
		return;
	}
	newnode->next = pos->next;
	pos->next = newnode;
}

删除操作:

void SListEraseAfter(SLTNode** pphead, SLTNode* pos)
{
	assert(pphead);
	assert(pos->next);
	SLTNode* next = pos->next;
	pos->next = next->next;
	free(next);
}

写个测试函数,先通过查找函数,获得想要结点的地址,再修改。

void TestSlist3()
{
	SLTNode* plist = NULL;
	SListPushFront(&plist, 1);
	SListPushFront(&plist, 2);
	SListPushFront(&plist, 3);
	SListPushFront(&plist, 4);
	SListPrint(plist);

	SLTNode* pos = SListFind(plist, 2);
	if (pos)
	{
		SListInsertAfter(pos, 30);
	}
	SListPrint(plist);

	pos = SListFind(plist, 30);
	if (pos)
	{
		SListEraseAfter(&plist, pos);
	}
	SListPrint(plist);
}

输出的结果:

2.4.2在指定位置前

在进行插入操作之前,应该先判断该位置是否为头结点,如果是头结点,直接头插;如果不是,需要遍历链表找到该位置结点的前一个节点,再插入。

void SListInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{
	assert(pphead);
	SLTNode* newnode = BuyListNode(x);
	if (*pphead == pos)
	{
		newnode->next = *pphead;
		*pphead = newnode;
	}
	else
	{
		// 找到pos的前一个位置
		SLTNode* posPrev = *pphead;
		while (posPrev->next != pos)
		{
			posPrev = posPrev->next;
		}

		posPrev->next = newnode;
		newnode->next = pos;
	}
}

删除也是一样,需要区分该位置是否为头结点,不是的话需要先找到该位置前一个节点,再删除。

void SListErase(SLTNode** pphead, SLTNode* pos)
{
	assert(pphead);
	assert(pos);

	//删除头节点
	if (*pphead == pos)
	{
		*pphead = pos->next;
		free(pos);//要不要把pos置为空指针呢
		pos = NULL;
	}
	else
	{	//找前一个节点
		SLTNode* posPrev = *pphead;
		while (posPrev->next != pos)
		{
			posPrev = posPrev->next;
		}
		//开始删除
		posPrev->next = pos->next;
		free(pos);
		pos = NULL;
	}
}

再写一个测试函数,与前一个测试函数类似。

void TestSlist4()
{
	SLTNode* plist = NULL;
	SListPushFront(&plist, 1);
	SListPushFront(&plist, 2);
	SListPushFront(&plist, 3);
	SListPushFront(&plist, 4);
	SListPrint(plist);

	SLTNode* pos = SListFind(plist, 2);
	if (pos)
	{
		SListInsert(&plist, pos, 30);
	}
	SListPrint(plist);

	pos = SListFind(plist, 1);
	if (pos)
	{
		SListErase(&plist, pos);
	}
	SListPrint(plist);
}

 输出的结果:

2.5 销毁链表

销毁链表需要遍历整个链表,因为链表上的每一个结点都是动态开辟出来的。

void SListDestory(SLTNode** pphead)
{
	assert(pphead);

	SLTNode* cur = *pphead;
	while (cur)
	{
		SLTNode* next = cur->next;
		free(cur); 
		cur = next;
	}
	*pphead = NULL;
}

3. 双向带头循环链表

开始之前,需要先创建三个文件List.h ,List.c和Ltest.c这三个文件。

  • Linked List.h文件包含所有用到的头文件,还有数据结构的设计和各种接口函数声明。
  • Linked List.c文件完成所有接口函数的实现。
  • Ltest.c主要代码是测试函数,来测试接口函数功能是否达标。

3.1 数据结构设计与接口函数声明

双向链表的数据结构中,不只有指向下一个结点的指针,还有指向上一个结点的指针。

typedef int LTDataType;

typedef struct ListNode
{
	LTDataType data;
	struct ListNode* next;
	struct ListNode* prev;
}LTNode;

//创建返回链表的头结点
LTNode* ListInit();
//双向链表的销毁
void ListDestroy(LTNode* phead);
//双向链表打印
void ListPrint(LTNode* phead);
//双向链表尾插
void ListPushBack(LTNode* phead, LTDataType x);
//双向链表头插
void ListPopBack(LTNode* phead);
//双向链表尾删
void ListPushFront(LTNode* phead, LTDataType x);
//双向链表头删
void ListPopFront(LTNode* phead);
//双向链表查找
LTNode* ListFind(LTNode* phead, LTDataType x);
//双向链表在pos的前面进行插入
void ListInsert(LTNode* pos, LTDataType x);
//双向链表删除pos位置的结点
void ListErase(LTNode* pos);

3.2 初始化,销毁,打印,动态创建结点

初始化的时候不是都只为空,需要创建一个哨兵位结点,不存储有效数据,并且next和prev都需要指向头结点,函数返回类型是LTNode*这样子就不需要传入二级指针。

LTNode* ListInit()
{
	LTNode* phead = (LTNode*)malloc(sizeof(LTNode));
	if (phead == NULL)
	{
		exit(1);
	}
	phead->next = phead;
	phead->prev = phead;

	return phead;
}

销毁操作跟单链表相同,需要逐个释放,最后头结点也得释放,但是不需要将头结点置为空指针,因为传入的是一级指针,此时销毁函数内的是形参,改变形参无法影响实参。

void ListDestroy(LTNode* phead)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		LTNode* next = cur->next;
		free(cur);
		cur = next;
	}

	free(phead);
}

打印函数使用while循环遍历链表即可。

void ListPrint(LTNode* phead)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		printf("%d ", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

动态创建一个新结点用处很大。注意next和prev都要置为空指针。

LTNode* BuyListNode(LTDataType x)
{
	LTNode* ptr = (LTNode*)malloc(sizeof(LTNode));
	if (ptr != NULL)
	{
		LTNode* newnode = ptr;
		newnode->data = x;
		newnode->next = NULL;
		newnode->prev = NULL;
		return newnode;
	}
	exit(1);
}

3.3 尾插,头插,尾删,头删

尾插不需要查找,只需要通过prev指针就能定位到。

void ListPushBack(LTNode* phead, LTDataType x)
{
	assert(phead);

	LTNode* tail = phead->prev;
	LTNode* newnode = BuyListNode(x);
	newnode->data = x;

	//改变结点连接关系
	tail->next = newnode;
	newnode->prev = tail;
	newnode->next = phead;
	phead->prev = newnode;
}

头插操作如下,改变结点之间的指向问题。

void ListPushFront(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* newnode = BuyListNode(x);
	LTNode* next = phead->next;

	phead->next = newnode;
	newnode->prev = phead;

	newnode->next = next;
	next->prev = newnode;
}

尾删需要注意不能删除到哨兵位,通过断言头结点的下一个结点不能指向本身。

void ListPopBack(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);
	
	LTNode* tail = phead->prev;
	LTNode* tailPrev = tail->prev;
	free(tail);

	tailPrev->next = phead;
	phead->prev = tailPrev;
}

头删的断言跟尾删一样,接下来就是释放并改变结点的指向。

void ListPopFront(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);

	LTNode* next = phead->next;
	LTNode* nextNext = next->next;
	
	phead->next = nextNext;
	nextNext->prev = phead;
	free(next);
}

3.4 查找,插入和删除

查找函数跟单链表查找函数类似,遍历链表。

LTNode* ListFind(LTNode* phead, LTDataType x)
{
	assert(phead);

	LTNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data == x)
			return cur;

		cur = cur->next;
	}
	printf("\n");
}

插入函数因为双链表结构的复杂性,反而变得十分简单,不需要遍历链表。

//pos位置之前插入
void ListInsert(LTNode* pos, LTDataType x)
{
	assert(pos);
	LTNode* posPrev = pos->prev;
	LTNode* newnode = BuyListNode(x);

	//posPrev newnode pos
	posPrev->next = newnode;
	newnode->prev = posPrev;
	newnode->next = pos;
	pos->prev = newnode;
}

删除函数也是,注意可通过新创建几个变量区分pos位置的前一个结点和后一个结点,方便操作。

//删除pos位置
void ListErase(LTNode* pos)
{
	assert(pos);

	// posPrev  pos  posNext
	LTNode* posPrev = pos->prev;
	LTNode* posNext = pos->next;

	posPrev->next = posNext;
	posNext->prev = posPrev;
	free(pos);
	pos = NULL;
}

写个测试函数:

void TestList2()
{
	LTNode* plist = ListInit();
	ListPushFront(plist, 1);
	ListPushFront(plist, 2);
	ListPushFront(plist, 3);
	ListPushFront(plist, 4);
	ListPrint(plist);

	LTNode* pos = ListFind(plist, 3);
	if (pos)
	{
		ListInsert(pos, 30);
	}
	ListPrint(plist);

	pos = ListFind(plist, 2);
	if (pos)
	{
		ListErase(pos);
	}
	ListPrint(plist);

	ListDestroy(plist);
	plist = NULL;
}

输出的结果:

4.链表和顺序表的区别

         不同点                顺序表                  链表
存储空间上  物理上一定连续逻辑上连续,物理上不一定连续
随机访问  支持O(1)  不支持 :O(N)
任意位置插入或删除元素可能需要搬移元素,效率低O(N)只需要修改指针指向
插入动态顺序表,空间不够需要扩容没有容量的概念
应用场景 元素高效存储+频繁访问任意位置插入和删除频繁
缓存利用率

5. 源代码

5.1 单链表

(1)SList.h

#pragma once

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>

typedef int SLTDataType;

typedef struct SListNode
{
	SLTDataType data;
	struct SListNode* next;
}SLTNode;

//动态申请一个结点
SLTNode* BuyListNode(SLTDataType x);
//单链表打印
void SListPrint(SLTNode* phead);
//单链表尾插
void SListPushBack(SLTNode** pphead, SLTDataType x);
//单链表头插
void SListPushFront(SLTNode** pphead, SLTDataType x);
//单链表尾删
void SListPopBack(SLTNode** pphead);
//单链表头删
void SListPopFront(SLTNode** pphead);
//单链表查找
SLTNode* SListFind(SLTNode* phead, SLTDataType x);
//在pos位置之前去插入一个节点
void SListInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
// 在pos位置后面插入
void SListInsertAfter(SLTNode* pos, SLTDataType x);
//删除pos位置的节点
void SListErase(SLTNode** pphead, SLTNode* pos);
//删除pos位置后一个节点
void SListEraseAfter(SLTNode** pphead, SLTNode* pos);
//单链表销毁
void SListDestory(SLTNode** pphead);

(2)SList.c

#include "SLinked list.h"

SLTNode* BuyListNode(SLTDataType x)
{
	//动态申请新结点
	SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));
	if (newnode == NULL)
	{
		//可能开辟内存失败,加上判断,增强代码的健壮性
		printf("malloc fail\n");
		exit(-1);
	}

	newnode->data = x;
	newnode->next = NULL;
	return newnode;
}

void SListPrint(SLTNode* phead)
{
	SLTNode* cur = phead;
	while (cur != NULL)
	{
		printf("%d->", cur->data);
		cur = cur->next;
	}
	printf("NULL\n");
}

SLTNode* SListFind(SLTNode* phead, SLTDataType x)
{
	assert(phead);
	SLTNode* cur = phead;
	while (cur)
	{
		if (cur->data == x)
		{
			return cur;
		}
		else
		{
			cur = cur->next;
		}
	}
	return NULL;
}

void SListPushBack(SLTNode** pphead, SLTDataType x)
{
	assert(pphead);
	SLTNode* newnode = BuyListNode(x);

	if (*pphead == NULL)
	{
		*pphead = newnode;
	}
	else
	{
		//找到尾节点
		SLTNode* tail = *pphead;
		while (tail->next != NULL)
		{
			tail = tail->next;
		}
		tail->next = newnode;
	}
}

void SListPushFront(SLTNode** pphead, SLTDataType x)
{
	assert(pphead);
	SLTNode* newnode = BuyListNode(x);

	newnode->next = *pphead;
	*pphead = newnode;
}


void SListPopBack(SLTNode** pphead)
{
	assert(pphead);
	assert(*pphead != NULL);

	if ((*pphead)->next == NULL)
	{
		//1. 一个节点
		free(*pphead);
		*pphead = NULL;
	}
	else
	{	
		//2. 两个及以上的节点
		SLTNode* tail = *pphead;
		while (tail->next->next)
		{
			tail = tail->next;
		}
		free(tail->next);
		tail->next = NULL;
	}
}

void SListPopFront(SLTNode** pphead)
{
	assert(pphead);
	assert(*pphead != NULL);

	SLTNode* next = (*pphead)->next;
	free(*pphead);
	*pphead = next;
}

// 在pos位置后面插入,这个更适合单链表
void SListInsertAfter(SLTNode* pos, SLTDataType x)
{
	assert(pos);
	SLTNode* newnode = BuyListNode(x);
	if (newnode == NULL)
	{
		return;
	}
	newnode->next = pos->next;
	pos->next = newnode;
}

void SListInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{
	assert(pphead);
	SLTNode* newnode = BuyListNode(x);
	if (*pphead == pos)
	{
		newnode->next = *pphead;
		*pphead = newnode;
	}
	else
	{
		// 找到pos的前一个位置
		SLTNode* posPrev = *pphead;
		while (posPrev->next != pos)
		{
			posPrev = posPrev->next;
		}

		posPrev->next = newnode;
		newnode->next = pos;
	}
}


void SListErase(SLTNode** pphead, SLTNode* pos)
{
	assert(pphead);
	assert(pos);

	//删除头节点
	if (*pphead == pos)
	{
		*pphead = pos->next;
		free(pos);//要不要把pos置为空指针呢
		pos = NULL;
	}
	else
	{	//找前一个节点
		SLTNode* posPrev = *pphead;
		while (posPrev->next != pos)
		{
			posPrev = posPrev->next;
		}
		//开始删除
		posPrev->next = pos->next;
		free(pos);
		pos = NULL;
	}
}

void SListEraseAfter(SLTNode** pphead, SLTNode* pos)
{
	assert(pphead);
	assert(pos->next);

	SLTNode* next = pos->next;
	pos->next = next->next;
	free(next);
}

(3)SLtest.c

#include "SLinked list.h"

void TestSlist1()
{
	SLTNode* plist = NULL;

	SListPushBack(&plist, 1);
	SListPushBack(&plist, 2);
	SListPushBack(&plist, 3);
	SListPushBack(&plist, 4);
	SListPrint(plist);

	SListPopBack(&plist);
	SListPopBack(&plist);
	SListPopBack(&plist);
	SListPrint(plist);
}

void TestSlist2()
{
	SLTNode* plist = NULL;
	SListPushFront(&plist, 1);
	SListPushFront(&plist, 2);
	SListPushFront(&plist, 3);
	SListPushFront(&plist, 4);
	SListPrint(plist);

	SListPopFront(&plist);
	SListPopFront(&plist);
	SListPopFront(&plist);
	SListPopFront(&plist);
	SListPrint(plist);
}

void TestSlist3()
{
	SLTNode* plist = NULL;
	SListPushFront(&plist, 1);
	SListPushFront(&plist, 2);
	SListPushFront(&plist, 3);
	SListPushFront(&plist, 4);

	SListPrint(plist);

	SLTNode* pos = SListFind(plist, 2);
	if (pos)
	{
		SListInsertAfter(pos, 30);
	}
	SListPrint(plist);

	pos = SListFind(plist, 30);
	if (pos)
	{
		SListEraseAfter(&plist, pos);
	}
	SListPrint(plist);
}

void TestSlist4()
{
	SLTNode* plist = NULL;
	SListPushFront(&plist, 1);
	SListPushFront(&plist, 2);
	SListPushFront(&plist, 3);
	SListPushFront(&plist, 4);
	SListPrint(plist);

	SLTNode* pos = SListFind(plist, 2);
	if (pos)
	{
		SListInsert(&plist, pos, 30);
	}
	SListPrint(plist);

	pos = SListFind(plist, 1);
	if (pos)
	{
		SListErase(&plist, pos);
	}
	SListPrint(plist);
}

int main()
{
	//TestSlist1();
	//TestSlist2();
	//TestSlist3();
	TestSlist4();

	return 0;
}

5.2 双向链表

(1)Linked LIst.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

typedef int LTDataType;

typedef struct ListNode
{
	LTDataType data;
	struct ListNode* next;
	struct ListNode* prev;
}LTNode;

//创建返回链表的头结点
LTNode* ListInit();
//双向链表的销毁
void ListDestroy(LTNode* phead);
//双向链表打印
void ListPrint(LTNode* phead);
//双向链表尾插
void ListPushBack(LTNode* phead, LTDataType x);
//双向链表头插
void ListPopBack(LTNode* phead);
//双向链表尾删
void ListPushFront(LTNode* phead, LTDataType x);
//双向链表头删
void ListPopFront(LTNode* phead);
//双向链表查找
LTNode* ListFind(LTNode* phead, LTDataType x);
//双向链表在pos的前面进行插入
void ListInsert(LTNode* pos, LTDataType x);
//双向链表删除pos位置的结点
void ListErase(LTNode* pos);

(2)Linked List.c

#include "Linked List.h"

LTNode* ListInit()
{
	LTNode* phead = (LTNode*)malloc(sizeof(LTNode));
	if (phead == NULL)
	{
		exit(1);
	}
	phead->next = phead;
	phead->prev = phead;

	return phead;
}

LTNode* BuyListNode(LTDataType x)
{
	LTNode* ptr = (LTNode*)malloc(sizeof(LTNode));
	if (ptr != NULL)
	{
		LTNode* newnode = ptr;
		newnode->data = x;
		newnode->next = NULL;
		newnode->prev = NULL;
		return newnode;
	}
	exit(1);
}

void ListPrint(LTNode* phead)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		printf("%d ", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

void ListPushBack(LTNode* phead, LTDataType x)
{
	assert(phead);

	LTNode* tail = phead->prev;
	LTNode* newnode = BuyListNode(x);
	newnode->data = x;

	//改变结点连接关系
	tail->next = newnode;
	newnode->prev = tail;
	newnode->next = phead;
	phead->prev = newnode;
}


void ListPopBack(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);
	
	LTNode* tail = phead->prev;
	LTNode* tailPrev = tail->prev;
	free(tail);

	tailPrev->next = phead;
	phead->prev = tailPrev;
}

void ListPushFront(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* newnode = BuyListNode(x);
	LTNode* next = phead->next;

	phead->next = newnode;
	newnode->prev = phead;

	newnode->next = next;
	next->prev = newnode;
}

void ListPopFront(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);

	LTNode* next = phead->next;
	LTNode* nextNext = next->next;
	
	phead->next = nextNext;
	nextNext->prev = phead;
	free(next);
}

LTNode* ListFind(LTNode* phead, LTDataType x)
{
	assert(phead);

	LTNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data == x)
			return cur;

		cur = cur->next;
	}
	printf("\n");
}


//pos位置之前插入
void ListInsert(LTNode* pos, LTDataType x)
{
	assert(pos);
	LTNode* posPrev = pos->prev;
	LTNode* newnode = BuyListNode(x);

	//posPrev newnode pos
	posPrev->next = newnode;
	newnode->prev = posPrev;
	newnode->next = pos;
	pos->prev = newnode;
}


//删除pos位置
void ListErase(LTNode* pos)
{
	assert(pos);

	// posPrev  pos  posNext
	LTNode* posPrev = pos->prev;
	LTNode* posNext = pos->next;

	posPrev->next = posNext;
	posNext->prev = posPrev;
	free(pos);
	pos = NULL;
}


void ListDestroy(LTNode* phead)
{
	assert(phead);
	LTNode* cur = phead->next;
	while (cur != phead)
	{
		LTNode* next = cur->next;
		free(cur);
		cur = next;
	}

	free(phead);
}

(3)Ltest.c

测试函数也可以自行封装几个,参照单链表的测试函数。

#include "Linked List.h"

void TestList1()
{
	LTNode* plist = ListInit();
	
	ListPushBack(plist, 1);
	ListPushBack(plist, 2);
	ListPushBack(plist, 3);
	ListPushBack(plist, 4);
	ListPrint(plist);

	ListPopBack(plist);
	ListPopBack(plist);
	ListPrint(plist);

}

void TestList2()
{
	LTNode* plist = ListInit();
	ListPushFront(plist, 1);
	ListPushFront(plist, 2);
	ListPushFront(plist, 3);
	ListPushFront(plist, 4);
	ListPrint(plist);

	LTNode* pos = ListFind(plist, 3);
	if (pos)
	{
		ListInsert(pos, 30);
	}
	ListPrint(plist);

	pos = ListFind(plist, 2);
	if (pos)
	{
		ListErase(pos);
	}
	ListPrint(plist);

	ListDestroy(plist);
	plist = NULL;
}

int main()
{
	//TestList1();
	TestList2();

	return 0;
}


总结

通过这篇文章,相信你已经对链表这个数据结构有了一定的了解,可以开始刷一些链表的OJ题目。如果只是看了一遍,建议上手敲敲代码,实践出真知。

创作不易,希望这篇文章能给你带来启发和帮助,如果喜欢这篇文章,请留下你的三连哦,你的支持的我最大的动力!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/381093.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV-34 顶帽操作和黑帽操作

一、顶帽操作&#xff08;TOPHAT&#xff09; 顶帽 原图 - 开运算 开运算的效果是去除图像外的噪点&#xff0c;因此原图 - 开运算就得到了去掉的噪点。 通过API --- morphologyEx&#xff08;img&#xff0c; MORPH_TOPHAT&#xff0c; kernel&#xff09; 示例代码如下&…

C++基础知识点预览

一.绪论&#xff1a; 1.1 C简史&#xff1a; 与C的关系&#xff1a; 被设计为C语言的继任者&#xff0c;C语言是一种过程型语言&#xff0c;程序员使用它定义执行特定操作的函数&#xff0c;而C是一种面向对象的语言&#xff0c;实现了继承、抽象、多态和封装等概念。C支持类&…

Spring Boot 笔记 004 自动配置和自定义starter

003讲到了导入jar包中的方法&#xff0c;但其实是个半成品&#xff0c;别人写的jar包中的方法我要在自己的代码中去调用&#xff0c;非常的不方便。原则上写给别人用的jar包&#xff0c;人家要能直接用&#xff0c;而不用写注入的方法。 在springboot中会自动扫描imports文件中…

【FFmpeg】ffplay 命令行参数 ⑤ ( 设置音频滤镜 -af 参数 | 设置统计信息 -stats 参数 | 设置同步时钟类型 -sync 参数 )

文章目录 一、ffplay 命令行参数 - 音频滤镜1、设置音频滤镜 -af 参数2、常用的 音频滤镜 参数3、音频滤镜链 示例 二、ffplay 命令行参数 - 统计信息1、设置统计信息 -stats 参数2、关闭统计信息 -nostats 参数 三、ffplay 命令行参数 - 同步时钟类型1、设置同步时钟类型 -syn…

从Socket中解析Http协议实现通信

在网络协议中&#xff0c;Socket是连接应用层和运输层的中间层&#xff0c;主要作用为了通信。Http协议是应用层上的封装协议。我们可以通过Http协议的规范解析Socket中数据&#xff0c;完成Http通信。 首先&#xff0c;我们先回顾一下Http协议的规范。主要复习一下&#xff0c…

YOLOv8改进 | 检测头篇 | 独创RFAHead检测头超分辨率重构检测头(适用Pose、分割、目标检测)

一、本文介绍 本文给大家带来的改进机制是RFAHead,该检测头为我独家全网首发,本文主要利用将空间注意力机制与卷积操作相结合的卷积RFAConv来优化检测头,其核心在于优化卷积核的工作方式,特别是在处理感受野内的空间特征时。RFAConv主要的优点就是增加模型的特征提取能力,…

【web前端开发】HTML及CSS简单页面布局练习

案例一 网页课程 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-wi…

Linux中ps/kill/execl的使用

ps命令&#xff1a; ps -aus或者ps -ajx或者 ps -ef可以查看有哪些进程。加上 | grep "xxx" 可以查看名为”xxx"的进程。 ps -aus | grep "xxx" kill命令&#xff1a; kill -9 pid 杀死某个进程 kill -l 查看系统有哪些信号 execl函数&#…

在Ubuntu上部署Stable Video Diffusion动画制作

Stable Diffusion团队推出的开源模型Stable Video Diffusion&#xff0c;支持生成约3秒的视频&#xff0c;分辨率为5761024。通过测试视频展示了其令人瞩目的性能&#xff0c;SVD模型是一个生成图像到视频的扩散模型&#xff0c;通过对静止图像的条件化生成短视频。其特点主要包…

Vue源码系列讲解——虚拟DOM篇【三】(更新子节点)

1. 前言 在上一篇文章中&#xff0c;我们了解了Vue中的patch过程&#xff0c;即DOM-Diff算法。并且知道了在patch过程中基本会干三件事&#xff0c;分别是&#xff1a;创建节点&#xff0c;删除节点和更新节点。创建节点和删除节点都比较简单&#xff0c;而更新节点因为要处理…

使用cocos2d-console初始化一个项目

先下载好cocos2d-x的源码包 地址 https://www.cocos.com/cocos2dx-download 这里使用的版本是 自己的电脑要先装好python27 用python安装cocos2d-console 看到项目中有个setup.py的一个文件 python setup.py 用上面的命令执行一下。 如果执行正常的话回出现上面的图 然后…

教师如何找答案? #知识分享#职场发展

当今社会&#xff0c;随着信息技术的迅猛发展&#xff0c;大学生们在学习过程中面临着各种各样的困难和挑战。而在这些挑战中&#xff0c;面对繁重的作业和复杂的题目&#xff0c;大学生搜题软件应运而生 1.快解题 这是一个网站 是一款服务于职业考证的考试搜题软件,拥有几千…

CVE-2018-19518 漏洞复现

CVE-2018-19518 漏洞介绍 IMAP协议&#xff08;因特网消息访问协议&#xff09;它的主要作用是邮件客户端可以通过这种协议从邮件服务器上获取邮件的信息&#xff0c;下载邮件等。它运行在TCP/IP协议之上&#xff0c;使用的端口是143。在php中调用的是imap_open函数。 PHP 的…

特征工程:数据平衡

目录 一、前言 二、正文 Ⅰ.基于过采样算法 Ⅱ.基于欠采样算法 Ⅲ..基于过采样和欠采样的综合算法 三、结语 一、前言 大多数情况下&#xff0c;使用的数据集是不完美的&#xff0c;会出现各种各样的问题&#xff0c;尤其针对分类问题的时候&#xff0c;会出现类别不平衡的…

可达鸭二月月赛——基础赛第六场(周五)题解,这次四个题的题解都在这一篇文章内,满满干货,含有位运算的详细用法介绍。

姓名 王胤皓 T1 题解 T1 题面 T1 思路 样例输入就是骗人的&#xff0c;其实直接输出就可以了&#xff0c;输出 Hello 2024&#xff0c;注意&#xff0c;中间有一个空格&#xff01; T1 代码 #include<bits/stdc.h> using namespace std; #define ll long long int …

机器学习---学习与推断,近似推断、话题模型

1. 学习与推断 基于概率图模型定义的分布&#xff0c;能对目标变量的边际分布&#xff08;marginal distribution&#xff09;或某些可观测变量 为条件的条件分布进行推断。对概率图模型&#xff0c;还需确定具体分布的参数&#xff0c;称为参数估计或学习问 题&#xff0c;…

MATLAB环境下一维时间序列信号的同步压缩小波包变换

时频分析相较于目前的时域、频域信号处理方法在分析时变信号方面&#xff0c;其主要优势在于可以同时提供时域和频域等多域信号信息&#xff0c;并清晰的刻画了频率随时间的变化规律&#xff0c;已被广泛用于医学工程、地震、雷达、生物及机械等领域。 线性时频分析方法是将信…

第十七篇【传奇开心果系列】Python的OpenCV库技术点案例示例:自适应阈值二值化处理图像提取文字

传奇开心果短博文系列 系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、自适应阈值二值化处理图像提取文字轮廓的初步示例代码:二、扩展思路介绍三、调整自适应阈值二值化的参数示例代码四、对二值化图像进行形态学操作示例代码五、使用轮廓特征进行筛选示…

Ubuntu22.04 gnome-builder gnome C 应用程序习练笔记(三)

八、ui窗体创建要点 .h文件定义(popwindowf.h)&#xff0c; TEST_TYPE_WINDOW宏是要创建的窗口样式。 #pragma once #include <gtk/gtk.h> G_BEGIN_DECLS #define TEST_TYPE_WINDOW (test_window_get_type()) G_DECLARE_FINAL_TYPE (TestWindow, test_window, TEST, WI…

java缓冲流

缓冲流相比较基本流效率更高&#xff0c;因为自带长度的8192缓冲区 缓冲流在io体系中的的位置&#xff1a; 字节缓冲流&#xff1a; 缓冲流的构造方法&#xff1a;输入、输出 **先通过一个练习了解字节缓冲流两个写法&#xff1a; //创建缓冲流对象 BufferedInputStream bis…