基于opencv-python模板匹配的银行卡号识别(附源码)

目录

介绍

数字模板处理

银行卡图片处理 

导入数字模板

模板匹配及结果


介绍

我们有若干个银行卡图片和一个数字模板图片,如下图

我们的目的就是通过对银行卡图片进行一系列图像操作使得我们可以用这个数字模板检测出银行卡号。

数字模板处理

首先我们先对数字模板进行处理,处理的目的是将数字模板中的每个数字分割开来。

先导入需要用到的包

import cv2
import os
import numpy as np
import matplotlib.pyplot as plt

然后再定义一个修改图片尺寸的函数

#修改尺寸
def img_resize(img, hight):
    (h, w) = img.shape[0], img.shape[1]
    r = h / hight
    width = w / r
    img = cv2.resize(img, (int(width), int(hight)))    
    return img

接下来,我们读入数字模板图片并对其进行灰度化,二值化和轮廓检测

#读入总模板
img = cv2.imread('images/ocr_a_reference.png')
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ref,thresh= cv2.threshold(ref, 127, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

由于模板比较简单,故用这些操作即可分割出来数字模板中的每个数字,我们可以看一下操作完后的结果

for i in range(len(contours)):
    x, y, w, h = cv2.boundingRect(contours[i])
    plt.subplot(3, 4, i + 1)
    plt.imshow(thresh[y:y + h, x:x + w], cmap=plt.cm.gray)
    plt.xticks([])
    plt.yticks([])

plt.show()

接下来,我们将各个模板保存起来,以便于后期读取使用

#保存模板
if not os.path.exists('data'):
    os.mkdir('data')

for i in range(len(contours)):
    x, y, w, h = cv2.boundingRect(contours[i])
    cv2.imwrite(os.path.join('data', str(9-i)+'.jpg'), thresh[y:y+h, x:x+w])

保存完后会生成一个data文件夹,可以看到每个数字都已经单独分割保存为单张图片了

到这里,数字模板处理就完成了

银行卡图片处理 

我们是要基于模板匹配去识别具体的银行卡号,而且我们在上述操作中已经得到了每个数字的模板,所以我们现在只需要从银行卡里面切割处理每个银行卡号,就可以进行模板匹配,那么怎么切割出银行卡里的每个号码呢,这里小编尝试过直接用图像处理技术进行单个切割,但发现效果并不好。此时我们发现银行卡号共有16位,其中每4位离的都比较近,那我们可不可以先画出整体四个,然后再对四个进行单独切割呢,显然,这样做的效果是比较好的。

 我们首先读入银行卡图片并修改尺寸和做灰度化处理

#灰度化
img = cv2.imread('images/credit_card_01.png')
img = img_resize(img, 200)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.imshow(gray, cmap=plt.cm.gray)

 然后对灰度图进行礼貌操作,用来突出银行卡中的数字

#礼貌操作
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 5))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
tophat = cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
plt.imshow(tophat, cmap=plt.cm.gray)

然后利用sobel算子增强图片的边缘信息,即增强数字信息

#sobel边缘检测
sobel = cv2.Sobel(tophat, cv2.CV_64F,dx=1, dy=0, ksize=3)
sobel = cv2.convertScaleAbs(sobel)
minval, maxval = np.min(sobel), np.max(sobel)
sobel = (255 * ((sobel - minval) / (maxval - minval)))
sobex = sobel.astype('uint8')
plt.imshow(sobex, cmap=plt.cm.gray)

 再对图像进行膨胀和腐蚀的操作,使得每四个数字连接在一起

#膨胀腐蚀
dilate = cv2.dilate(sobel, rectKernel, 10)
erosion = cv2.erode(dilate, rectKernel, 10)
plt.imshow(erosion, cmap=plt.cm.gray)

此时发现图像上有些噪声,所以我们对图像进行二值化操作,以去除这些白点

#二值化
erosion = cv2.convertScaleAbs(erosion)
ret, thresh = cv2.threshold(erosion, 0, 255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)
plt.imshow(thresh, cmap=plt.cm.gray)

 

进行完二值化操作后,再进行一次膨胀腐蚀操作,加深数字区域信息

#膨胀腐蚀
dilate = cv2.dilate(thresh, sqKernel, 10)
erosion = cv2.erode(dilate, sqKernel, 10)
plt.imshow(dilate, cmap=plt.cm.gray)

现在效果就比较好了,我们就可以在此图像上画轮廓了

#画轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cur_img = img.copy()
cur_img = cv2.cvtColor(cur_img, cv2.COLOR_BGR2RGB)
cv2.drawContours(cur_img,contours,-1,(0,0,255),3)
plt.imshow(cur_img)

 

但是我们发现,这个轮廓不仅廓住了数字区域,还廓住了其他区域,此时我们将数字区域轮廓过滤出来,并画出来数字区域显示一下(数字是棕色的是因为此时显示的BGR图像)

#过滤轮廓
locs = []
for(i,c) in enumerate(contours):
    (x,y,w,h) = cv2.boundingRect(c)
    ar = w/float(h)
    if ar>2.5 and ar<4.0:
        if(w>40 and w<60) and (h>10 and h<20):
            locs.append((x,y,w,h))
print(len(locs))

for i in range(len(locs)):
    x,y,w,h = locs[3-i]
    contour = img[y:y+h, x:x+w,:]
    plt.subplot(2, 2, i+1)
    plt.imshow(contour)
    plt.xticks([])
    plt.yticks([])
        
plt.show()

 

此时没有银行卡上其他信息的干扰,我们可以很简单的使用灰度化,二值化和轮廓检测来廓住每个单独的数字

#进行最后的处理
results = []
for i in range(len(locs)):
    x,y,w,h = locs[3-i]
    img_new = img[y:y+h, x:x+w,:]
    gray = cv2.cvtColor(img_new, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)
    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    res = img_new.copy()
    for j in range(len(contours)):
        x, y, w, h = cv2.boundingRect(contours[3-j])
        res = cv2.rectangle(res, (x, y), (x+w, y+h), (255, 0, 0), 1)
        results.append(thresh[y:y+h, x:x+w])
    
    plt.subplot(2, 2, i+1)
    plt.imshow(res, cmap=plt.cm.gray)
    plt.xticks([])
    plt.yticks([])
        
plt.show()

最后我们就可以得到银行卡中的每个单独号码

#可以看一下results
for i in range(16):
    results[i] = cv2.resize(results[i], (10, 15))
    plt.subplot(2, 8, i+1)
    plt.imshow(results[i], cmap=plt.cm.gray)
    plt.xticks([])
    plt.yticks([])
        
plt.show()

 

导入数字模板

在处理完银行卡后,我们导入我们一开始获得的数字模板,进行最后的模板匹配

#引入模板
digits = {}
for i in range(10):
    digits[i] = cv2.resize(cv2.imread('data/{}.jpg'.format(i)), (10, 15))
    digits[i] = cv2.cvtColor(digits[i], cv2.COLOR_BGR2GRAY)
    ref, digits[i] = cv2.threshold(digits[i], 0, 255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)

for i in range(10):
    plt.subplot(2, 5, i+1)
    plt.imshow(digits[i], cmap=plt.cm.gray)
    plt.xticks([])
    plt.yticks([])
        
plt.show()

模板匹配及结果

导入数字模板后,就可以进行模板匹配得到结果了

#模板匹配得出结果
res = ''
for i in results:
    scores = []
    for j in range(10):
        result = cv2.matchTemplate(i, digits[j], cv2.TM_CCOEFF)  # result为一个输出矩阵
        (_, score, _, _) = cv2.minMaxLoc(result)  # 这个方法会返回最小值,最大值,最小值位置和最大值位置
        scores.append(score)
    res = res + str(np.argmax(scores))
print(res)

plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show

我们也可以看一下其他银行卡的匹配结果 

 

其中有一张银行卡号的识别好像因为环境等因素出了点问题,其他的识别都是没问题的,大体来说结果还算可以

源码及文件请查看:https://github.com/jvyou/Bank-card-number-identification

效果演示请查看:https://www.bilibili.com/video/BV1hK421C7Bk/?spm_id_from=333.999.0.0&vd_source=ea64b940c4e46744da2aa737dca8e183

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/380753.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

12 ABC串口接收原理与思路

1. 串口接收原理 基本原理&#xff1a;通过数据起始位判断要是否要开始接收的数据&#xff0c;通过采样的方式确定每一位数据是0还是1。 如何判断数据起始位到来&#xff1a;通过边沿检测电路检测起始信号的下降沿 如何采样&#xff1a;一位数据采多次&#xff0c;统计得到高…

压敏电阻简介

压敏电阻 原理 压敏电阻器是一种具有瞬态电压抑制功能的元件&#xff0c;可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。压敏电阻器可以对IC及其它设备的电路进行保护&#xff0c;防止因静电放电、浪涌及其它瞬态电流&#xff08;如雷击等&#xff09;而造成对它们…

书生·浦语大模型第三课作业

基础作业&#xff1a; 复现课程知识库助手搭建过程 (截图) 进阶作业&#xff1a; 选择一个垂直领域&#xff0c;收集该领域的专业资料构建专业知识库&#xff0c;并搭建专业问答助手&#xff0c;并在 OpenXLab 上成功部署&#xff08;截图&#xff0c;并提供应用地址&#x…

VUE学习——事件处理

事件分为内联事件和方法事件。 我们可以使用【v-on】&#xff08;简写&#xff1a;&#xff09;来处理。 内联 <button v-on:click"count">按钮</button><button click"count">按钮</button><p>{{ count }}</p>方法

【闲谈】初识深度学习

在过去的十年中&#xff0c;深度学习彻底改变了我们处理数据和解决复杂问题的方式。从图像识别到自然语言处理&#xff0c;再到游戏玩法&#xff0c;深度学习的应用广泛且深入。本文将探讨深度学习的基础知识、关键技术以及最新的研究进展&#xff0c;为读者提供一个全面的视角…

谈谈安全对抗的本质

前言 红队和蓝队的兄弟们都辛苦了&#xff0c;趁夜深人静的时候写了一点东西&#xff0c;算是一点心得与体会&#xff0c;谈谈安全对抗的本质&#xff0c;仅供大家参考。 今年的活动&#xff0c;笔者和去年一样&#xff0c;镇守公司&#xff0c;运筹帷幄之中&#xff0c;决胜千…

问题:老年人心理健康维护与促进的原则为________、________、发展原则。 #媒体#知识分享

问题&#xff1a;老年人心理健康维护与促进的原则为________、________、发展原则。 参考答案如图所示

Spring IoC容器详解

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 基本概念 Spring IoC容器是Spring框架的核心组件&#xff0c;它实现了控制反转&#xff08;Inversion of Control&#xff0c;IoC&#xff09;的设计原则。IoC是一种编程思…

【RabbitMQ(一)】:基本介绍 | 配置安装与快速入门

应该是新年前最后一篇博客了&#xff0c;明天浅浅休息一下&#xff0c;提前祝大家新年快乐捏&#xff01;&#x1f60a;&#x1f60a;&#x1f60a; 01. 基础理解 1.1 同步调用和异步调用 &#x1f449; 同步调用 的时候调用者会 阻塞 等待被调用函数或方法执行完成&#xff…

【MySQL】MySQL表的增删改查(基础)

MySQL表的增删改查&#xff08;基础&#xff09; 1. CRUD2. 新增&#xff08;Create&#xff09;2.1 单行数据全列插入2.2 多行数据 指定列插入 3. 查询&#xff08;Retrieve&#xff09;3.1 全列查询3.2 指定列查询3.3 查询字段为表达式3.4 别名3.5 去重&#xff1a;DISTINCT…

K8S系列文章之 [使用 Alpine 搭建 k3s]

官方文档&#xff1a;K3s - 轻量级 Kubernetes | K3s 官方描述&#xff0c;可运行在 systemd 或者 openrc 环境上&#xff0c;那就往精简方向走&#xff0c;使用 alpine 做系统。与 RHEL、Debian 的区别&#xff0c;主要在防火墙侧&#xff1b;其他基础配置需求类似&#xff0…

每日五道java面试题之java基础篇(一)

第一题 什么是java? PS&#xff1a;碎怂 Java&#xff0c;有啥好介绍的。哦&#xff0c;⾯试啊。 Java 是⼀⻔⾯向对象的编程语⾔&#xff0c;不仅吸收了 C语⾔的各种优点&#xff0c;还摒弃了 C⾥难以理解的多继承、指针等概念&#xff0c;因此 Java 语⾔具有功能强⼤和简单易…

Python爬虫实战:抓取猫眼电影排行榜top100#4

爬虫专栏系列&#xff1a;http://t.csdnimg.cn/Oiun0 抓取猫眼电影排行 本节中&#xff0c;我们利用 requests 库和正则表达式来抓取猫眼电影 TOP100 的相关内容。requests 比 urllib 使用更加方便&#xff0c;而且目前我们还没有系统学习 HTML 解析库&#xff0c;所以这里就…

Linux开发:PAM1 介绍

PAM(Pluggable Authentication Modules )是Linux提供的一种通用的认证方式,他可以根据需要动态的加载认证模块,从而减少认证开发的工作量以及提供认证的灵活度。 1.PAM的框架 PAM的框架由一下几个部分构成 1)应用程序,即需要使用认证服务的程序,这些应用程序是使用抽象…

剑指offer——二维数组中的查找(杨氏矩阵)

目录 1. 题目描述2. 常见错误思路3. 分析3.1 特例分析3.2 规律总结 4. 完整代码 1. 题目描述 在一个二维数组中&#xff0c;每一行都按照从左到右递增的顺序排序&#xff0c;每一列都按照从上到下递增的顺序排序。请完成一个函数&#xff0c;输入这样的一个二维数组和一个整数&…

[SAP] ABAP代码程序美化器大小写格式化设置

按照ABAP开发的规范&#xff0c;ABAP源代码里推荐将所有的关键字大写&#xff0c;其余ABAP变量小写 我们可以手动修改上述代码大小写规范的问题&#xff0c;但如果代码量很多的情况下&#xff0c;手动确保这个规范(所有的关键字大写&#xff0c;其余ABAP变量小写)有点费事&…

机器学习系列——(二十)密度聚类

引言 在机器学习的无监督学习领域&#xff0c;聚类算法是一种关键的技术&#xff0c;用于发现数据集中的内在结构和模式。与传统的基于距离的聚类方法&#xff08;如K-Means&#xff09;不同&#xff0c;密度聚类关注于数据分布的密度&#xff0c;旨在识别被低密度区域分隔的高…

谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比&#xff0c;ALOHA 2 具有更强的性能、人体工程学设计和稳健性&#xff0c;且成本还不到 20 万元人民币。并且&#xff0c;为了加速大规模双手操作的研究&#xff0c;ALOHA 2 相关的所有硬件设计全部开…

VDB-具有动态拓扑的高分辨率稀疏体积表示方法

论文地址&#xff1a;Museth_TOG13.pdf 概述 论文提出了一个称为VDB的新颖数据结构和算法&#xff0c;它可以高效地表示三维网格上的稀疏、随时间变化的数据。 VDB的数据结构基于B树&#xff0c;包含一个动态的根节点&#xff0c;以及多个内部节点和叶节点层次&#xff0c;这…

Guava RateLimiter单机实战指南

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Guava RateLimiter单机实战指南 前言maven坐标引入业务实现重要参数和方法关于warmupPeriod实战 前言 想象一下你是一位大厨&#xff0c;正在烹饪美味佳肴。突然之间&#xff0c;前来就餐的人潮如潮水…