机器学习系列——(二十)密度聚类

引言

在机器学习的无监督学习领域,聚类算法是一种关键的技术,用于发现数据集中的内在结构和模式。与传统的基于距离的聚类方法(如K-Means)不同,密度聚类关注于数据分布的密度,旨在识别被低密度区域分隔的高密度区域。这种方法在处理具有复杂形状和大小的聚类时表现出色,尤其擅长于识别噪声和异常值。本文将详细介绍密度聚类的概念、主要算法及其应用。

一、概述

密度聚类基于一个核心思想:聚类可以通过连接密度相似的点来形成,即一个聚类是由一组密度连续且足够高的点组成的。这意味着聚类的形成不依赖于任何预定的形状,而是由数据本身的分布决定。密度聚类的优点在于它不仅能够识别出任意形状的聚类,还能在聚类过程中有效地识别并处理噪声点。

二、主要算法

2.1 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)

DBSCAN是最著名的密度聚类算法之一,它根据高密度区域的连通性来进行聚类。DBSCAN的核心概念包括:

  • 核心点:在指定半径( \epsilon )内含有超过最小数量( MinPts )的点。
  • 边缘点:在( \epsilon )半径内点的数量少于( MinPts ),但属于核心点的邻域。
  • 噪声点:既不是核心点也不是边缘点的点。

DBSCAN算法的步骤如下:

  1. 对每个点,计算其( \epsilon )邻域内的点数。
  2. 标记满足核心点条件的点。
  3. 对每个核心点,如果它还没有被分配到任何聚类,创建一个新的聚类,并递归地将所有密度可达的核心点添加到这个聚类。
  4. 将边缘点分配给相邻的核心点的聚类。
  5. 剩下的点标记为噪声。

2.2 OPTICS(Ordering Points To Identify the Clustering Structure)

OPTICS算法是对DBSCAN的一种改进,旨在克服DBSCAN在处理不同密度区域的数据集时的局限性。OPTICS不直接进行聚类划分,而是创建一个达到顺序的点列表,这个顺序反映了数据结构的内在聚类。通过这个列表,可以根据需要生成不同密度阈值的聚类结果。

OPTICS算法的关键在于它引入了两个新概念:

  • 核心距离:对于任何核心点,其核心距离是到达( MinPts )个最近邻的距离。
  • 可达距离:点A到点B的可达距离是核心点A的核心距离与A到B的实际距离中的较大值。

通过这两个度量,OPTICS评估并排序数据点,以揭示数据的聚类结构。

2.3举例

下面是一个使用Python中的sklearn库来实现DBSCAN算法的简单示例。这个例子将展示如何使用DBSCAN对二维数据进行聚类分析。

首先,我们需要安装sklearn库(如果尚未安装):

pip install scikit-learn

然后,可以使用以下代码来生成一些模拟数据并应用DBSCAN算法进行聚类:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from sklearn.cluster import DBSCAN

# 生成模拟数据
X, _ = make_moons(n_samples=300, noise=0.1, random_state=42)

# 应用DBSCAN算法
# eps: 邻域的大小
# min_samples: 形成一个簇所需的最少样本点数
dbscan = DBSCAN(eps=0.2, min_samples=5)
dbscan.fit(X)

# 获取聚类标签
labels = dbscan.labels_

# 绘制结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', marker='o', s=50, edgecolor='k')
plt.title('DBSCAN Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.colorbar()
plt.show()

# 打印噪声点(标记为-1的点)
noise = np.sum(labels == -1)
print(f"Detected noise points: {noise}")

在这个例子中,我们首先使用make_moons函数生成了300个样本点,这些点形成了两个半圆形(或称为月牙形)的分布,这是一个非常典型的用于测试聚类算法性能的数据集,因为它的聚类结构不是全局线性可分的。

接着,我们创建了一个DBSCAN实例,并设置了两个关键参数:epsmin_sampleseps参数定义了搜索邻居的半径大小,而min_samples定义了一个区域内点的最小数量,这个数量足以让这个区域被认为是一个密集区域。通过调整这两个参数,可以控制聚类的粒度。

最后,我们使用.fit()方法对数据进行拟合,并通过.labels_属性获取每个点的聚类标签。我们使用matplotlib库绘制了聚类结果,并通过颜色区分了不同的聚类。

三、密度聚类的应用

密度聚类在许多领域都有广泛的应用,特别是在那些传统聚类方法难以处理的复杂数据集中。以下是一些典型的应用场景:

  • 异常检测:通过识别噪声点,密度聚类可以用于识别异常值或离群点。
  • 地理空间数据分析:如根据地理位置信息对地点进行聚类,找出热点区域。
  • 生物信息学:在基因表达数据分析中,密度聚类能够帮助识别具有相似表达模式的基因。
  • 图像分割:将图像分割成若干区域,每个区域由相似密度的像素点组成。

四、结语

密度聚类提供了一种强大的工具,用于发现数据集中的自然聚类和噪声点。通过关注数据的局部密度特征,它能够识别出任意形状的聚类,并有效处理噪声和异常值。DBSCAN和OPTICS等算法的发展,使得密度聚类成为处理复杂数据集的有力方法。随着数据科学领域的不断进步,密度聚类仍将是未来数据分析和模式识别研究的重要方向之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/380727.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比,ALOHA 2 具有更强的性能、人体工程学设计和稳健性,且成本还不到 20 万元人民币。并且,为了加速大规模双手操作的研究,ALOHA 2 相关的所有硬件设计全部开…

VDB-具有动态拓扑的高分辨率稀疏体积表示方法

论文地址:Museth_TOG13.pdf 概述 论文提出了一个称为VDB的新颖数据结构和算法,它可以高效地表示三维网格上的稀疏、随时间变化的数据。 VDB的数据结构基于B树,包含一个动态的根节点,以及多个内部节点和叶节点层次,这…

Guava RateLimiter单机实战指南

欢迎来到我的博客,代码的世界里,每一行都是一个故事 Guava RateLimiter单机实战指南 前言maven坐标引入业务实现重要参数和方法关于warmupPeriod实战 前言 想象一下你是一位大厨,正在烹饪美味佳肴。突然之间,前来就餐的人潮如潮水…

查看系统进程信息的Tasklist命令

Tasklist命令是一个用来显示运行在本地计算机上所有进程的命令行工具,带有多个执行参数。另外,Tasklist可以代替Tlist工具。通过任务管理器,可以查看到本机完整的进程列表,而且可以通过手工定制进程列表方式获得更多进程信息&…

【stomp实战】websocket原理解析与简单使用

一、WebSocket 原理 WebSocket是HTML5提供的一种浏览器与服务器进行全双工通讯的网络技术,属于应用层协议。它基于TCP传输协议,并复用HTTP的握手通道。浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接, 并…

Python入门知识点分享——(二十)继承和方法重写

今天是大年三十,祝大家龙年大吉,当然无论何时何地,我们都不要忘记继续学习。今天介绍的是继承和方法重写这两种面向对象编程特点。继承机制指的是,一个类(我们称其为子类或派生类)可以使用另一个类&#xf…

备战蓝桥杯---动态规划(基础3)

本专题主要介绍在求序列的经典问题上dp的应用。 我们上次用前缀和来解决,这次让我们用dp解决把 我们参考不下降子序列的思路,可以令f[i]为以i结尾的最大字段和,易得: f[i]max(a[i],a[i]f[i-1]); 下面是AC代码: #in…

vue3 之 商城项目—登陆

整体认识 登陆页面的主要功能就是表单校验和登陆登出业务 路由配置 模版 <script setup></script><template><div><header class"login-header"><div class"container m-top-20"><h1 class"logo"&g…

【数学建模】【2024年】【第40届】【MCM/ICM】【A题 七鳃鳗性别比与资源可用性】【解题思路】

我们通过将近半天的搜索数据&#xff0c;查到了美国五大湖中优势物种的食物网数据&#xff0c;以Eric伊利湖为例&#xff0c;共包含34各优势物种&#xff0c;相互之间的关系如下图所示&#xff1a; 一、题目 &#xff08;一&#xff09; 赛题原文 2024 MCM Problem A: Reso…

OpenCV 笔记(21):图像色彩空间

1. 图像色彩空间 图像色彩空间是用于定义颜色范围的数学模型。 它规定了图像中可以使用的颜色以及它们之间的关系。它决定了图像中可以显示的颜色范围。不同的色彩空间可以包含不同的颜色范围&#xff0c;因此选择合适的色彩空间对于确保图像在不同设备上看起来一致非常重要。…

【开源】基于JAVA+Vue+SpringBoot的假日旅社管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统介绍2.2 QA 问答 三、系统展示四、核心代码4.1 查询民宿4.2 新增民宿评论4.3 查询民宿新闻4.4 新建民宿预订单4.5 查询我的民宿预订单 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的假日旅社…

专业145+总分400+合肥工业大学833信号分析与处理综合考研经验电子信息通信,真题,大纲,参考书

今年专业课145总分400&#xff0c;我总结一下自己的专业课合肥工业大学833信号分析与处理和其他几门的复习经验。希望对大家复习有帮助。 我所用的教材是郑君里的《信号与系统》&#xff08;第三版&#xff09;和高西全、丁玉美的《数字信号处理》&#xff08;第四版&#xff…

HiveSQL——共同使用ip的用户检测问题【自关联问题】

注&#xff1a;参考文章&#xff1a; SQL 之共同使用ip用户检测问题【自关联问题】-HQL面试题48【拼多多面试题】_hive sql 自关联-CSDN博客文章浏览阅读810次。0 问题描述create table log( uid char(10), ip char(15), time timestamp);insert into log valuesinsert into l…

微软AD域替代方案,助力企业摆脱hw期间被攻击的窘境

在红蓝攻防演练&#xff08;hw行动&#xff09;中&#xff0c;AD域若被攻击成功&#xff0c;是其中一个扣分最多的一项内容。每年&#xff0c;宁盾都会接到大量AD在hw期间被攻击&#xff0c;甚至是被打穿的企业客户。过去&#xff0c;企业还会借助2FA双因子认证加强OA、Exchang…

蓝桥杯每日一题------背包问题(一)

背包问题 阅读小提示&#xff1a;这篇文章稍微有点长&#xff0c;希望可以对背包问题进行系统详细的讲解&#xff0c;在看的过程中如果有任何疑问请在评论区里指出。因为篇幅过长也可以进行选择性阅读&#xff0c;读取自己想要的那一部分即可。 前言 背包问题可以看作动态规…

UE4运用C++和框架开发坦克大战教程笔记(十八)(第55~57集)

UE4运用C和框架开发坦克大战教程笔记&#xff08;十八&#xff09;&#xff08;第55~57集&#xff09; 55. UI 进入退出动画HideOther 面板出现时隐藏其他面板添加面板出现和收起的动画效果编写遮罩管理器前的准备 56. 弹窗进入界面57. UI 显示隐藏与遮罩转移完善遮罩管理器 55…

ARM汇编[0] hello world

文章目录 简述寄存器语法系统调用例程 简述 如果不了解x86汇编的话建议先了解下&#xff0c;x86资料多、环境好搞、容易入门 阿尔可是急于求成的人&#xff0c;希望赶快看到成果&#xff1b; 所以本篇文章不会东讲西讲展开讲&#xff0c;只讲让hello world汇编能跑起来的关键…

2 月 9 日算法练习- 数据结构 - 除夕快乐♪٩(´ω`)و♪

翻转括号序列 暴力过20%数据 思路&#xff1a;括号合法序列问题可以利用前缀和&#xff0c;将"(“看成 1&#xff0c;”)"看成 0&#xff0c;规律是到某个位置为止的前缀和>0并且到最后前缀和0。 #include<bits/stdc.h> using namespace std; const int N…

鸿蒙原生应用再添新丁!央视新闻 入局鸿蒙

鸿蒙原生应用再添新丁&#xff01;央视新闻 入局鸿蒙 来自 HarmonyOS 微博2月9日消息&#xff0c;#央视新闻启动鸿蒙原生应用开发#中央广播电视总台旗舰央视新闻客户端正式宣布&#xff0c;将基于HarmonyOS NEXT鸿蒙星河版&#xff0c;启动央视新闻 鸿蒙原生应用开发&#xf…

扑克牌大小(模拟)

题目 import java.util.Scanner; public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);String s sc.nextLine();String[] ss s.split("-");StringBuffer s1 new StringBuffer();StringBuffer s2 new StringBuffer(…