时间序列预测 —— DeepAR 模型

时间序列预测 —— DeepAR 模型

DeepAR 模型是一种专门用于处理时间序列概率预测的深度学习模型,它可以自动学习数据中的复杂模式,提高预测的准确性。本文将介绍 DeepAR 模型的理论基础、优缺点,并通过 Python 实现单步预测和多步预测的完整代码。

1. DeepAR 模型简介

DeepAR 模型是由亚马逊提出的一种概率生成模型,旨在进行时间序列预测。与传统的基于深度学习的序列模型(如 LSTM 和 GRU)不同,DeepAR 考虑了时间序列的复杂模式。它采用了一种门控循环单元(Gated Recurrent Unit, GRU)的,结合了蒙特卡洛的概率生成方法,使其在处理多维时间序列数据时表现优异。

2. DeepAR 模型理论及公式

DeepAR

2.1 基本原理

DeepAR 模型的基本原理是将历史时间序列数据作为输入,通过逐步预测未来数据。模型利用历史观测值和可变长度的上下文窗口来学习数据的动态模式,并通过概率生成方法提供置信区间。传统时序预测为点预测,DeepAR为区间概率预测。

2.2 模型公式

DeepAR 模型的核心是门控循环单元(GRU)和注意力机制,其中 GRU 的更新公式如下:

GRU 的更新步骤:
z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) h ~ t = tanh ( W ⋅ [ r t ⋅ h t − 1 , x t ] + b ) h t = ( 1 − z t ) ⋅ h t − 1 + z t ⋅ h ~ t \begin{aligned} z_t &= \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \\ r_t &= \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \\ \tilde{h}_t &= \text{tanh}(W \cdot [r_t \cdot h_{t-1}, x_t] + b) \\ h_t &= (1 - z_t) \cdot h_{t-1} + z_t \cdot \tilde{h}_t \end{aligned} ztrth~tht=σ(Wz[ht1,xt]+bz)=σ(Wr[ht1,xt]+br)=tanh(W[rtht1,xt]+b)=(1zt)ht1+zth~t

其中:

  • z t z_t zt 是更新门,控制要从候选隐藏状态 (\tilde{h}_t) 中选择多少信息传递给新的隐藏状态。
  • r t r_t rt 是重置门,控制要忽略前一时刻隐藏状态的程度。
    - h ~ t \tilde{h}_t h~t是候选隐藏状态。
  • h t h_t ht 是当前时刻的隐藏状态。

2.3 模型结构

DeepAR 模型结构包括多层 GRU 单元,每一层都有自己的权重和偏差。模型还使用了注意力机制,以便更好地处理长序列。DeepAR以蒙特卡罗样本的形式进行概率预测,该样本可用于计算预测视界内所有子范围的一致分位数估

3. DeepAR 与其他模型的区别

相较于传统的序列模型,DeepAR 在以下方面有显著的不同之处:

  • 考虑季节性和周期性: DeepAR 能够自动学习和捕捉数据中的季节性和周期性模式,而无需手动调整。

  • 多维时间序列处理: DeepAR 能够有效处理多维时间序列,同时考虑多个时间序列之间的相关性。

4. DeepAR 模型优缺点

4.1 优点

  • 自动捕捉复杂模式: DeepAR 能够自动捕捉时间序列中的复杂模式,无需手动特征工程。

  • 概率生成: 模型提供了预测的概率分布,可以用于构建置信区间。

4.2 缺点

  • 计算成本较高: 模型的训练和预测过程相对较慢,尤其

在处理大规模数据时。

5. DeepAR 模型 Python 实现

下面将通过 Python 代码演示 DeepAR 模型的单步预测和多步预测。请确保已安装必要的库:

pip install mxnet gluonts

5.1 单步预测代码

# 导入必要的库
from gluonts.model.deepar import DeepAREstimator
from gluonts.dataset.common import ListDataset
from gluonts.trainer import Trainer

# 创建示例数据(替换为你自己的数据)
train_data = [...]  # 训练数据
test_data = [...]   # 测试数据

# 将数据转换为 ListDataset 格式
train_ds = ListDataset([{"start": "2022-01-01", "target": train_data}], freq="D")
test_ds = ListDataset([{"start": "2022-01-10", "target": test_data}], freq="D")

# 定义 DeepAR 模型参数
estimator = DeepAREstimator(freq="D", prediction_length=7, trainer=Trainer(epochs=10))

# 训练模型
predictor = estimator.train(train_ds)

# 单步预测
single_step_forecast = predictor.predict(test_ds)

# 打印预测结果
print(single_step_forecast.mean)

5.2 多步预测代码

# 导入必要的库
from gluonts.model.deepar import DeepAREstimator
from gluonts.dataset.common import ListDataset
from gluonts.trainer import Trainer

# 创建示例数据(替换为你自己的数据)
train_data = [...]  # 训练数据
test_data = [...]   # 测试数据

# 将数据转换为 ListDataset 格式
train_ds = ListDataset([{"start": "2022-01-01", "target": train_data}], freq="D")
test_ds = ListDataset([{"start": "2022-01-10", "target": test_data}], freq="D")

# 定义 DeepAR 模型参数
estimator = DeepAREstimator(freq="D", prediction_length=14, trainer=Trainer(epochs=10))

# 训练模型
predictor = estimator.train(train_ds)

# 多步预测
multi_step_forecast = predictor.predict(test_ds)

# 打印预测结果
print(multi_step_forecast.mean)

6. 总结

本文介绍了时间序列预测中的 DeepAR 模型,包括其理论基础、优缺点以及与其他模型的区别。通过 Python 代码演示了 DeepAR 模型的单步预测和多步预测,希望读者能够更好地理解和应用这一强大的时间序列预测模型。在实际应用中,可以根据具体问题进行模型参数的调整和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/380262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

51单片机编程应用(C语言):串口通信

目录 通信的基本概念和种类 1.1串行通信与并行通信 ​编辑 1.2同步通信与异步通信 1.3单工,半双工,全双工 1.4通信速率 二、波特率和比特率的关系 串口通信简介: 1.接口标准 RS-232 2、D型9针接口定义 3.通信协议: …

金和OA C6 RssModulesHttp.aspx SQL注入漏洞复现

0x01 产品简介 金和网络是专业信息化服务商,为城市监管部门提供了互联网+监管解决方案,为企事业单位提供组织协同OA系统开发平台,电子政务一体化平台,智慧电商平台等服务。 0x02 漏洞概述 金和OA C6 RssModulesHttp.aspx接口处存在SQL注入漏洞,攻击者除了可以利用 SQL 注入…

018 Linux

文章目录 操作系统定义分类Linux系统构成 Linux文件系统Linux常用命令基础操作命令文件操作压缩解压权限管理显示展示命令其他命令 vi编译器操作使用 添加用户基本概念用户管理命令 ubuntu软件安装ssh服务终端启动Python服务 操作系统 定义 操作系统是管理计算机硬件与软件资…

【Linux系统学习】 4.Linux实用操作 上

Linux实用操作 1.各类小技巧(快捷键) 1.1 ctrl c 强制停止 Linux某些程序的运行,如果想要强制停止它,可以使用快捷键ctrl c 命令输入错误,也可以通过快捷键ctrl c,退出当前输入,重新输入 1…

前端JavaScript篇之如何获得对象非原型链上的属性?

目录 如何获得对象非原型链上的属性? 如何获得对象非原型链上的属性? 要获取对象上非原型链上的属性,可以使用 hasOwnProperty() 方法。这个方法是 JavaScript 内置的对象方法,用于检查一个对象是否包含指定名称的属性&#xff0…

数字孪生与智慧园区的融合:打造未来产业生态的新篇章

随着科技的飞速发展,数字孪生和智慧园区已经成为当今社会发展的重要趋势。数字孪生技术为物理世界的对象提供了数字化的复制体,而智慧园区则通过各种信息技术手段实现园区的智能化管理。二者的融合,将为未来产业生态的发展开辟新的篇章。 一…

大华智慧园区综合管理平台 deleteFtp RCE漏洞复现

免责声明:文章来源互联网收集整理,请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该…

LLM大语言模型(六):RAG模式下基于PostgreSQL pgvector插件实现vector向量相似性检索

目录 HightLightMac上安装PostgreSQLDBever图形界面管理端创建DB 使用向量检索vector相似度计算近似近邻索引HNSW近似近邻索引示例 HightLight 使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。 可以和在线业务共用一套DB&#…

【PyQt】08 - 编辑Tab顺序

文章目录 前言一、Tab顺序二、编辑Tab顺序总结 前言 介绍了什么是Tab顺序,以及如何修改Tab顺序。 一、Tab顺序 当你的界面设计好之后,在输入栏按住Tab按键,他会按照你摆放的顺序一次转跳 二、编辑Tab顺序 方法一 然后鼠标左击就可以改变…

【力扣】快乐数,哈希集合 + 快慢指针 + 数学

快乐数原题地址 方法一:哈希集合 定义函数 getNext(n) ,返回 n 的所有位的平方和。一直执行 ngetNext(n) ,最终只有 2 种可能: n 停留在 1 。无限循环且不为 1 。 证明:情况 1 是存在的,如力扣的示例一…

AcWing 1224 交换瓶子(简单图论)

[题目概述] 有 N 个瓶子,编号 1∼N,放在架子上。 比如有 5 个瓶子: 2 1 3 5 4 要求每次拿起 2 个瓶子,交换它们的位置。 经过若干次后,使得瓶子的序号为: 1 2 3 4 5 对于这么简单的情况,显然&a…

Linux命令行工具使用HTTP代理的方法详解

亲爱的Linux用户们,有没有想过在命令行世界里,你的每一个指令都能悄无声息地穿越千山万水,而不被外界窥探?哈哈,没错,就是通过HTTP代理!今天,我们就来一起探索如何在Linux命令行工具…

林浩然与杨凌芸的Java奇遇记:Lambda表达式大冒险

林浩然与杨凌芸的Java奇遇记:Lambda表达式大冒险 Lin Haoran and Yang Lingyun’s Java Adventure: The Grand Expedition of Lambda Expressions 在Java编程世界的一隅,住着一对编程界的“才子佳人”,男主角名叫林浩然,女主角唤作…

【Algorithms 4】算法(第4版)学习笔记 06 - 2.3 快速排序

文章目录 前言参考目录学习笔记1:基本算法1.1:快速排序 demo 演示1.2:快速排序切分代码实现1.3:实现细节1.4:案例分析1.4.1:最佳案例1.4.2:最坏案例1.4.3:平均案例分析1.5&#xff1…

从Kafka系统中读取消息数据——消费

从Kafka系统中读取消息数据——消费 消费 Kafka 集群中的主题消息检查消费者是不是单线程主题如何自动获取分区和手动分配分区subscribe实现订阅(自动获取分区)assign(手动分配分区) 反序列化主题消息反序列化一个类.演示 Kafka 自…

大模型学习 一

https://www.bilibili.com/video/BV1Kz4y1x7AK/?spm_id_from333.337.search-card.all.click GPU 计算单元多 并行计算能力强 指数更重要 A100 80G V100 A100 海外 100元/时 单卡 多卡并行: 单机多卡 模型并行 有资源的浪费 反向传播 反向传播(B…

通过遵循最佳做法来提高 EDA 和 HPC 应用程序的 Azure NetApp 文件性能

介绍 Azure NetApp 文件是一项托管存储解决方案,适用于各种方案,包括高性能计算 (HPC) 基础结构。 低延迟和每秒高 I/O 操作数 (IOPS) 对于大规模企业而言是一种很好的组合。 假设你就职于一家半导体公司。 你的任务是设计公司的集成电路芯片&#xff…

Ajax+JSON学习一

AjaxJSON学习一 文章目录 前言一、Ajax简介1.1. Ajax基础1.2. 同源策略 二、Ajax的核心技术2.1. XMLHttpRequest 类2.2. open指定请求2.3. setRequestHeader 设置请求头2.4. send发送请求主体2.5. Ajax取得响应 总结 前言 一、Ajax简介 1.1. Ajax基础 Ajax 的全称是 Asynchron…

【项目问题解决】java. net.SocketException: Connection reset

目录 【项目问题解决】java. net.SocketException: Connection reset 1.问题描述2.问题原因3.解决思路4.解决方案5.总结6.参考 文章所属专区 项目问题解决 1.问题描述 通过JMeter 压测接口,无并发,无间歇时间跑接口10000次报错,后续改成建个…

DBdoctor恭祝大家龙行龘龘,前程朤朤

值此新年之际,DBdoctor恭祝大家龙行龘龘,前程朤朤。尤其是当前还跟我一样奋斗在护航春节一线的战友们,祝愿大家2024年系统又快又稳。 今年是DBdoctor护航春晚的第三年,聚好看作为海信旗下的互联网科技公司,服务着海信…