【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割

今天学习到了图像分割。

这是我学习笔记的脑图。

图像分割,Image Segmentation,就是将数字图像分割为若干个图像子区域(像素的集合,也被称为超像素),改变图像的表达方式,以更容易理解和分析。

图像分割,十分重要,也十分困难,是计算机视觉中的关键步骤。

图像分割分为三类:

  • 语义分割。预测出输入熟悉的每个像素点属于哪一类的标签
  • 实例分割。在语义分割的基础上,还要区分出同一类的不同个体
  • 全景分割。在实例分割的基础上,对背景的每个像素点,进行分割。 

图像分割的应用也是非常广泛的:

  • 医学核磁影像
  • 遥感
  • 交通领域的车辆轮廓提取 

下面我来了解更多:

图像分割是计算机视觉(CV)领域中的一个关键技术,旨在将图像或视频帧划分为多个部分或对象。这些部分通常基于某种相似性准则(如颜色、纹理、形状等)进行区分,以便对图像中的不同区域进行识别、分析和理解。图像分割是后续高级视觉任务(如目标检测、场景理解、图像描述等)的基础。

关键技术

  1. 深度学习:卷积神经网络(CNN)及其变体(如U-Net、Mask R-CNN等)已成为图像分割的主流方法。它们能够自动学习图像的多层次特征,并通过端到端的训练方式优化分割性能。

  2. 特征提取:传统方法依赖于手工设计的特征(如SIFT、SURF、HOG等),而现代方法则更多地依赖于深度学习自动提取的特征。

  3. 上下文信息:利用像素或区域之间的空间关系可以提高分割的准确性。条件随机场(CRF)、马尔可夫随机场(MRF)等方法常用于捕获上下文信息。

  4. 多尺度分析:由于图像中的对象可能具有不同的大小,因此多尺度分析对于捕捉不同尺度的信息至关重要。

  5. 边缘检测:识别对象的边界是分割的一个重要步骤,常用的边缘检测方法包括Sobel、Canny等。

  6. 图论方法:如Graph Cut、Grab Cut等,通过构造图模型并利用图理论中的算法进行优化,实现图像分割。

  7. 无监督与半监督学习:在缺乏大量标注数据的情况下,无监督和半监督学习方法对于图像分割尤为重要。

  8. 后处理:包括形态学操作(如膨胀、腐蚀)、区域合并等步骤,用于优化分割结果。

应用场景

  1. 自动驾驶:在道路场景理解中分割车道线、车辆、行人等。

  2. 医学图像分析:在CT、MRI等医学图像中分割肿瘤、血管、器官等结构。

  3. 人脸识别与生物特征分析:分割人脸区域以进行人脸识别或表情分析。

  4. 卫星遥感:在遥感图像中分割不同类型的地表覆盖(如森林、水体、城市等)。

  5. 视频监控:在安防视频中分割并跟踪移动目标。

  6. 增强现实:将虚拟对象准确地放置在现实世界的分割区域中。

  7. 时尚与零售:在服装图像中分割不同的服装项目,以支持虚拟试衣等功能。

主流的商业化产品

  1. DeepArt Structures(DeepMind):针对医学图像的分割工具,已在多种医学应用场景中取得显著效果。

  2. Photoshop(Adobe):虽然主要是一个图像处理软件,但Photoshop包含了强大的图像分割功能,支持用户进行精细的选区操作。

  3. Mask R-CNN(Facebook AI Research):一个广泛使用的实例分割框架,已在多个开源项目和商业产品中得到应用。

  4. Cityscapes Dataset(Daimler AG):虽然本身不是一个产品,但这个城市街景数据集推动了自动驾驶领域图像分割技术的发展,并催生了一系列相关商业化应用。

  5. TensorFlow Object Detection API(Google):提供了包括图像分割在内的多种目标检测功能,易于集成到各种应用中。

关于三个分类的图像分割——

语义分割

定义:语义分割是将图像中的每个像素标记为属于某个预定义的类别(如人、狗、天空等)的过程。它不考虑同一类别中不同实例之间的区别。

关键技术:深度卷积神经网络(DCNN)、上采样技术(如转置卷积、上采样层)、跳跃连接(如在U-Net中)、多尺度特征融合、上下文信息建模(如ASPP在DeepLab系列中)。

实现路径:通常通过端到端的训练方式,使用标注好的语义分割数据集(如PASCAL VOC、Cityscapes等)来训练深度神经网络模型。损失函数常采用交叉熵损失或Dice损失等。

实例分割

定义:实例分割是语义分割的一个扩展,它不仅要求将图像中的每个像素标记为某个类别,还要求区分同一类别中的不同实例(如区分图像中的多个人)。

关键技术:除了语义分割中提到的技术外,实例分割还需要额外的机制来区分不同实例。这通常通过引入目标检测框架(如Faster R-CNN)、使用掩码预测分支(如在Mask R-CNN中)或采用基于聚类的后处理方法来实现。

实现路径:一种常见的实现路径是在现有的目标检测框架(如Faster R-CNN)基础上添加一个并行的掩码预测分支(如Mask R-CNN)。这样,模型可以同时输出每个实例的边界框和像素级掩码。另一种路径是采用两阶段方法,首先进行语义分割,然后使用聚类或其他后处理步骤将同一类别的像素分组为不同的实例。

全景分割

定义:全景分割是语义分割和实例分割的结合体。它的目标是为图像中的每个像素分配一个唯一的标签,这个标签既包含了像素的语义类别信息,也包含了它属于哪个实例的信息(对于可计数的对象如人、车等)或它是否属于背景/不可计数的类别(如天空、草地等)。

关键技术:全景分割需要同时处理语义分割和实例分割的任务,因此它结合了这两者的关键技术。此外,还需要一种机制来融合语义和实例信息,以确保每个像素都有一个唯一的标签。这通常通过设计复杂的网络结构和使用特殊的训练策略来实现。

实现路径:一种常见的实现路径是采用一个共享的特征提取器来同时提取用于语义分割和实例分割的特征。然后,分别使用不同的解码器来生成语义分割图和实例分割图。最后,通过一个融合步骤来结合这两个结果,生成全景分割图。这个融合步骤可能涉及到复杂的逻辑判断和标签映射操作,以确保每个像素都被正确标记。另一种路径是采用端到端的训练方式,直接优化全景分割的损失函数。这种方法需要设计一种能够同时处理语义和实例信息的网络结构,并使用大量的标注数据来训练这个网络。由于全景分割任务的复杂性,这种方法通常需要大量的计算资源和时间来达到满意的性能。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/379591.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[WUSTCTF2020]朴实无华(特详解)

一开始说header出问题了 就先dirsaerch扫一遍 发现robot.txt 访问一下 去看看&#xff0c;好好好&#xff0c;肯定不是得 他一开始说header有问题&#xff0c;不妨抓包看看&#xff0c;果然有东西 访问看看&#xff0c;乱码修复一下&#xff0c;在之前的博客到过 <img src…

LeetCode Python - 5.最长回文子串

文章目录 题目答案运行结果 题目 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串。 示例 1&#xff1a; 输入&#xff1a;s “babad” 输出&#xff1a;“bab” 解释&#xff1a;“aba” 同…

2024牛客寒假算法基础集训营2部分题解

Tokitsukaze and Bracelet 链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述 《绯染天空》是一款由 key 社与飞机社共同开发的角色扮演游戏&#xff0c;剧情内容由著名的剧本作家麻枝准编写。它是一款氪金手游&#xff0c;但也有 st…

Blender教程(基础)-衰减编辑-20

1、新建一个平面并细分 如下图所示菜单衰减工具 选中一个点上下移动、图形形变衰减 再点击箭头上下移动过程中不要松开鼠标&#xff0c;此时按鼠标中键实现衰减区域的快速调节。 也可以再菜单栏输入参数调节 调节形状 shiftA添加经纬球 按数字1切换正交前视 切换…

生态位模拟——草稿笔记

文章目录 前言ENM初识一、所需软件安装1.1. 下载ArcGIS软件&#xff1a;1.2. 下载 MaxEnt软件&#xff1a;1.3. 下载ENMtools&#xff1a; 二、数据准备与处理2.1. 物种分布数据2.2. 环境因子数据2.3. 地图数据2.4. 物种分布点去冗余2.4.1. 使用spThin包中的thin函数2.4.2. 或者…

贵金属交易包括哪些?香港有哪些贵金属交易平台?

随着金融市场的不断发展&#xff0c;贵金属交易作为一种投资方式&#xff0c;越来越受到投资者的关注。贵金属交易不仅具有投资价值&#xff0c;还能够为投资者提供规避风险和保值的工具。本文将介绍贵金属交易的种类和香港的贵金属交易平台。 一、贵金属交易的种类 贵金属交…

UE4运用C++和框架开发坦克大战教程笔记(十九)(第58~60集)完结

UE4运用C和框架开发坦克大战教程笔记&#xff08;十九&#xff09;&#xff08;第58~60集&#xff09;完结 58. 弹窗显示与隐藏59. UI 面板销毁60. 框架完成与总结 58. 弹窗显示与隐藏 这节课我们先来补全 TransferMask() 里对于 Overlay 布局类型面板的遮罩转移逻辑&#xff…

Vuex介绍和使用

1. 什么是Vuex Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式和库。它解决了在大型 Vue.js 应用程序中共享和管理状态的问题&#xff0c;使得状态管理变得更加简单、可预测和可维护。 在 Vue.js 应用中&#xff0c;组件之间的通信可以通过 props 和事件进行&#xff0c…

从github上拉取项目到pycharm中

有两种方法&#xff0c;方法一较为简单&#xff0c;方法二用到了git bash&#xff0c;推荐方法一 目录 有两种方法&#xff0c;方法一较为简单&#xff0c;方法二用到了git bash&#xff0c;推荐方法一方法一&#xff1a;方法二&#xff1a; 方法一&#xff1a; 在github上复制…

SpringCloud-微服务项目架构

在当今软件开发领域&#xff0c;微服务架构正成为构建灵活、可伸缩、独立部署的应用的首选&#xff0c;微服务架构作为一种灵活而强大的设计模式&#xff0c;通过将系统拆分为独立的、自治的服务&#xff0c;使得应用更容易维护、扩展和升级。本文将探讨微服务项目架构的关键特…

WordPress函数wptexturize的介绍及用法示例,字符串替换为HTML实体

在查看WordPress你好多莉插件时发现代码中使用了wptexturize()函数用来随机输出一句歌词&#xff0c;下面boke112百科就跟大家一起来学习一下WordPress函数wptexturize的介绍及用法示例。 WordPress函数wptexturize介绍 wptexturize( string $text, bool $reset false ): st…

质数基础筛法

文章目录 埃氏筛线性筛 埃氏筛 埃氏筛是一种筛素数的方法&#xff0c;埃氏筛的思想很重要&#xff0c;主要是时间复杂度 朴素的埃氏筛的时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn) 这个复杂度是调和级数 vector<int>p; int vis[N];void solve() {rep(i,2,n){if(…

爪哇部落算法组2024新生赛热身赛题解

第一题&#xff08;签到&#xff09;&#xff1a; 1、题意&#xff1a; 2、题解: 我们观察到happynewyear的长度是12个字符&#xff0c;我们直接从前往后遍历0到n - 12的位置&#xff08;这里索引从0开始&#xff09;&#xff0c;使用C的substr()函数找到以i开头的长度为12的字…

形态学算法应用之连通分量提取的python实现——图像处理

原理 连通分量提取是图像处理和计算机视觉中的一项基本任务&#xff0c;旨在识别图像中所有连通区域&#xff0c;并将它们作为独立对象处理。在二值图像中&#xff0c;连通分量通常指的是所有连接在一起的前景像素集合。这里的“连接”可以根据四连通或八连通的邻接关系来定义…

基于华为云欧拉操作系统(HCE OS)容器化部署传统应用(Redis+Postgresql+Git+SpringBoot+Nginx)

写在前面 博文内容为 华为云欧拉操作系统入门级开发者认证(HCCDA – Huawei Cloud EulerOS)实验笔记整理认证地址&#xff1a;https://edu.huaweicloud.com/certificationindex/developer/9bf91efb086a448ab4331a2f53a4d3a1博文内容涉及一个传统 Springboot 应用HCE部署&#x…

云安全的基本概念(基本目标与指导方针)

目录 一、云安全概念概述 1.1 概述 二、云安全的基本目标 2.1 安全策略开发模型 2.1.1 信息安全三元组 2.1.1.1 保密性(Confidentiality) 2.1.1.2 完整性(Integrity) 2.1.1.3 可用性(Availability) 2.1.2 信息安全三元组的局限性 2.2 其他信息安全属性 2.2.1 真实性 …

《山雨欲来-知道创宇 2023 年度 APT 威胁分析总结报告》

下载链接: https://pan.baidu.com/s/1eaIOyTk12d9mcuqDGzMYYQ?pwdzdcy 提取码: zdcy

HttpClient | 支持 HTTP 协议的客户端编程工具包

目录 1、简介 2、应用场景 3、导入 4、API 5、示例 5.1、GET请求 5.2、POST请求 &#x1f343;作者介绍&#xff1a;双非本科大三网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;专注于Java领域学习&#xff0c;擅长web应用开发、数据结构和算法&#xff0c;初…

[晓理紫]CCF系列会议截稿时间订阅

CCF系列会议截稿时间订阅 关注{晓理紫|小李子}&#xff0c;每日更新最新CCF系列会议信息&#xff0c;如感兴趣&#xff0c;请转发给有需要的同学&#xff0c;谢谢支持&#xff01;&#xff01; 如果你感觉对你有所帮助&#xff0c;请关注我&#xff0c;每日准时为你推送最新CCF…

MATLAB知识点:逻辑运算函数

​讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自第3章 3.4.4 逻辑运算 3.4.4.1 逻辑运算函数 在上…