挑战杯 python opencv 深度学习 指纹识别算法实现

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python opencv 深度学习 指纹识别算法实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 指纹识别方式

目前市面上有两种指纹识别,分别是光学式和电容式指纹识别。

2.1 电容式指纹识别

电容式指纹识别要比光学式的复杂得多,其原理是将压力感测、电容感测、热感测等感测器整合于一块芯片中,当指纹按压芯片表面时,内部电容感测器会根据指纹波峰与波谷而产生的电荷差(或是温差),形成指纹影像,再通过与算法内部的指纹库进行匹配,从而完成指纹识别。

在这里插入图片描述

电容式指纹识别技术较为复杂,对技术研发和积累有较高要求,并且涉及大量专利,算法得实现也相对困难,所以目前全球只有少数公司能在这方面提供领先的技术产品。

2.2 光学式指纹识别

然后是光学式指纹识别,大家常见的指纹考勤机就是光学式指纹识别。

这类光学式指纹识别主要包括4个方面功能

  • 1.指纹模块负责采集指纹图像。
  • 2.数字信号处理器主要把采集到的指纹图像转化为数字信号。
  • 3.微控制器是整个系统的控制单元,在这里将进行指纹的验证以及输出指令。
  • 4.液晶显示器将输出指纹验证结果。

当我们把手指放在指纹考勤机上时,通过镜面反射原理,指纹模块就会采集指纹图像

在这里插入图片描述

接着指纹图像就会被数字信号处理器转换成数字信号

在这里插入图片描述

然后通过微控制器将数字信号与指纹库里的指纹进行匹配,匹配结果将通过液晶显示器显示出来。这就是光学式指纹识别的工作原理。

电容式与光学式指纹识别主要在指纹的采集方式上拥有较大差异,而在指纹的验证过程中则基本类似。然而因为电容式指纹识别拥有体积小、适用性广的优点,已经有越来越多的设备采用电容式指纹识别,未来的主流将是电容式指纹识别。

3 指纹识别算法实现

3.1 指纹识别算法流程

在这里插入图片描述

3.2 指纹图像预处理

  • 1.图像归一化
  • 2.图像分割
  • 3.图像二值化
  • 4.细化

几个步骤 当然有一些算法为了追求极致,中间还利用了增强、多重滤波等方式,但最根本的目的都是为了在细化之后保留指纹信息并且方便后续处理。

预处理之后是特征点的提取,也就是找到指纹图像当中有价值,具有唯一性和不变性的信息。主要特征点有端点、分叉点几类,在提取部分除了简单的遍历检索确认之外,还有比较重要的一步是伪特征点的去除,主要是针对图像不清晰、不完整导致的断点和边缘端点等。

最后一步是特征点的匹配,将指纹库中的指纹信息与提取的目标图像特征点进行对比。主流算法是以指纹中心点为依据,根据特征点所在的角度及距离,确认其所在位置,根据匹配度计算是否是同一手指的指纹。

3.3 指纹图像目标提取

指纹图像目标提取主要是将指纹图片中提取出来,也叫做指纹图像分割。

图片的前景通过观察可知是由条状或者圆形的一些组成,而底图其他部分只是一个均匀的底色而已。

我们使用非常简单的手段,基于局部梯度就可以很容易实现我们的目标。

方差梯度法提取指纹:

指纹图像通常由前景区域(包含有指纹的脊线和谷线)和背景区域这两部分组成。一般来说,在指纹图像的前景区域中,指纹的脊线和谷线的灰度差是较大的,因而其灰度统计特性局部灰度方差很大;而在指纹图像的背景区域中,两者的方差是很小的。基于这一特性,可以利用指纹图像的局部方差来进行分割。因此,这种方法也被称为方差梯度法。

的灰度平均值 M和方差 Var计算方法:
在这里插入图片描述

提取前的指纹图像:

在这里插入图片描述

提取后的指纹图像:
在这里插入图片描述

可以看到,学长做的还有些噪点,但是也很好解决,做一次形态学操作即可:

在这里插入图片描述

这样噪点就去除了。

3.4 指纹图像增强

在这里插入图片描述

3.5 指纹特征提取

人体指纹的特征可以反映在给定的人类群体里来自不同手指的指纹之间相似的程度。

指纹的特征信息很多,所有的这些指纹特征信息构成了庞大的指纹特征集合。

指纹的细节特征主要指的是纹线端点(RidgeEnding)和纹线分叉点(RidgeBifurcation)。

纹线端点指的是纹线突然结束的位置,而纹线分叉点则是指纹线一分为二的位置。

大量的统计结果表明,使用这两类特征点就足以描述指纹的唯一性。

在这里插入图片描述

Minutia Cylinder-Code (MCC) ,该算法是非常著名的指纹特征识提取算法,

第一次发表在:IEEE tPAMI

Minutia Cylinder-Code: a new representation and matching technique for
fingerprint recognition", IEEE tPAMI 2010

  • MCC提出了一种基于三维数据结构的圆柱编码算法,其从细节的距离和角度出发,构造了圆柱编码
  • 为一种多级的指纹匹配方法,其不仅使用了细节点特征也使用了方向场等特征
  • 特征视为一种局部结构,也是3D结构

在这里插入图片描述

部分实现代码:

# Compute the cell coordinates of a generic local structure# 计算
​    mcc_radius = 70
​    mcc_size = 16
​    

g = 2 * mcc_radius / mcc_size
x = np.arange(mcc_size)*g - (mcc_size/2)*g + g/2
y = x[..., np.newaxis]
iy, ix = np.nonzero(x**2 + y**2 <= mcc_radius**2)
ref_cell_coords = np.column_stack((x[ix], x[iy]))
    mcc_sigma_s = 7.0
    mcc_tau_psi = 400.0
    mcc_mu_psi = 1e-2
    

def Gs(t_sqr):
    """Gaussian function with zero mean and mcc_sigma_s standard deviation, see eq. (7) in MCC paper"""
    return np.exp(-0.5 * t_sqr / (mcc_sigma_s**2)) / (math.tau**0.5 * mcc_sigma_s)

def Psi(v):
    """Sigmoid function that limits the contribution of dense minutiae clusters, see eq. (4)-(5) in MCC paper"""
    return 1. / (1. + np.exp(-mcc_tau_psi * (v - mcc_mu_psi)))


​    
​    
​    
​    # n: number of minutiae# c: number of cells in a local structure
​    

xyd = np.array([(x,y,d) for x,y,_,d in valid_minutiae]) # matrix with all minutiae coordinates and directions (n x 3)

# rot: n x 2 x 2 (rotation matrix for each minutia)

d_cos, d_sin = np.cos(xyd[:,2]).reshape((-1,1,1)), np.sin(xyd[:,2]).reshape((-1,1,1))
rot = np.block([[d_cos, d_sin], [-d_sin, d_cos]])

# rot@ref_cell_coords.T : n x 2 x c

# xy : n x 2

xy = xyd[:,:2]

# cell_coords: n x c x 2 (cell coordinates for each local structure)

cell_coords = np.transpose(rot@ref_cell_coords.T + xy[:,:,np.newaxis],[0,2,1])

# cell_coords[:,:,np.newaxis,:]      :  n x c  x 1 x 2

# xy                                 : (1 x 1) x n x 2

# cell_coords[:,:,np.newaxis,:] - xy :  n x c  x n x 2

# dists: n x c x n (for each cell of each local structure, the distance from all minutiae)

dists = np.sum((cell_coords[:,:,np.newaxis,:] - xy)**2, -1)

# cs : n x c x n (the spatial contribution of each minutia to each cell of each local structure)

cs = Gs(dists)
diag_indices = np.arange(cs.shape[0])
cs[diag_indices,:,diag_indices] = 0 # remove the contribution of each minutia to its own cells

# local_structures : n x c (cell values for each local structure)

local_structures = Psi(np.sum(cs, -1))

3.6 指纹识别结果

提取特征后,剩下的任务就是对特征进行分类了,可以使用的算法就很多了,比如svm,决策树、神经网络,都可以

在这里插入图片描述

4 整体效果

在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/379087.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java面试题(一)——MySQL索引、JVM内存模型、JDBC

1、mysql使用innodb引擎&#xff0c;请简述mysql索引的最左前缀如何优化 order by 语句&#xff1f; 1.1、核心回答 首先要对sql进行分析检查必要的查询字段&#xff0c;过滤字段&#xff0c;排序字段是否按顺序创建好了索引 如果查询字段不在索引中可能会产生回表操作会导致…

Linux环境下配置HTTP代理服务器教程

大家好&#xff0c;我是你们可爱的Linux小助手&#xff01;今天&#xff0c;我将带你们一起探索如何在Linux环境下配置一个HTTP代理服务器。请注意&#xff0c;这不是一次火箭科学的实验&#xff0c;而是一次简单而有趣的冒险。 首先&#xff0c;我们需要明确什么是HTTP代理服…

TOP100 二叉树(三)

11.114. 二叉树展开为链表 给你二叉树的根结点 root &#xff0c;请你将它展开为一个单链表&#xff1a; 展开后的单链表应该同样使用 TreeNode &#xff0c;其中 right 子指针指向链表中下一个结点&#xff0c;而左子指针始终为 null 。展开后的单链表应该与二叉树 先序遍历 顺…

IoC原理

Spring框架的IOC是基于Java反射机制实现的&#xff0c;那具体怎么实现的&#xff0c;下面研究一下 反射 Java反射机制是在运行状态中&#xff0c;对于任意一个类&#xff0c;都能够知道这个类的所有属性和方法&#xff1b;对于任意一个对象&#xff0c;都能够调用它的任意方法…

JenkinsGitLab完成自动化构建部署

关于GitLab安装:GitLab安装-CSDN博客 Docker中安装GitLab:Docker下安装GitLab-CSDN博客 安装JenKins Jenkins官网:Jenkins 中文版:Jenkins 安装时候中文页面的war包下不来 在英文页面 记得装JDK8以上 JenKins使用java写的 运行JenKins需要JDK环境 我这里已经装好了 将下…

网神 SecGate 3600 防火墙 route_ispinfo_import_save 文件上传漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

问题:重热现象可使多级汽轮机的理想焓降增加,重热系数越大,多级汽轮机的内效率就越低。 #学习方法#微信#媒体

问题&#xff1a;重热现象可使多级汽轮机的理想焓降增加&#xff0c;重热系数越大&#xff0c;多级汽轮机的内效率就越低。 参考答案如图所示

代码随想录算法训练营第二十五天 |216.组合总和III,17.电话号码的字母组合(已补充)

剪枝操作讲解&#xff1a;&#xff08;已观看&#xff09; 带你学透回溯算法-组合问题的剪枝操作&#xff08;对应力扣题目&#xff1a;77.组合&#xff09;| 回溯法精讲&#xff01;_哔哩哔哩_bilibili 216.组合总和III&#xff08;已观看&#xff09; 1、题目链接&#xf…

Pinia介绍和使用

1. pinia是什么 Pinia 是一个基于 Vue.js 的状态管理库&#xff0c;用于管理应用程序的数据。它提供了一种简单、直观且可扩展的方式来组织和访问应用程序的状态&#xff0c;下面是详细介绍 基于 Vue 3&#xff1a;Pinia 是专门为 Vue 3 开发的状态管理库&#xff0c;充分利用…

推理系统学习笔记

一些学习资料 最近对MLsys比较感兴趣&#xff0c;遂找些资料开始学习一下 https://fazzie-key.cool/2023/02/21/MLsys/https://qiankunli.github.io/2023/12/16/llm_inference.htmlhttps://dlsyscourse.orghttps://github.com/chenzomi12/DeepLearningSystem/tree/main/04Infe…

算法——前缀和算法

1. 什么是前缀和算法 前缀和算法&#xff08;Prefix Sum&#xff09;是一种用于快速计算数组元素之和的技术。它通过预先计算数组中每个位置前所有元素的累加和&#xff0c;将这些部分和存储在一个新的数组中&#xff0c;从而在需要计算某个区间的和时&#xff0c;可以通过简单…

《Git 简易速速上手小册》第3章:分支管理(2024 最新版)

文章目录 3.1 创建与合并分支3.1.1 基础知识讲解3.1.2 重点案例&#xff1a;为 Python 项目添加新功能3.1.3 拓展案例 1&#xff1a;使用 Pull Requests (PRs) 在团队中合作3.1.4 拓展案例 2&#xff1a;解决合并冲突 3.2 分支策略的最佳实践3.2.1 基础知识讲解3.2.2 重点案例&…

【动态规划】【前缀和】【数学】2338. 统计理想数组的数目

作者推荐 【动态规划】【前缀和】【C算法】LCP 57. 打地鼠 本文涉及知识点 动态规划汇总 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 LeetCode:2338. 统计理想数组的数目 给你两个整数 n 和 maxValue &#xff0c;用于描述一个 理想…

手把手教你玩转蓝牙模块(原理+驱动)

head: title: 手把手教你玩转蓝牙模块&#xff08;原理驱动&#xff09; description: 手把手教你玩转蓝牙模块&#xff08;原理驱动&#xff09; 作为嵌入式开发工程师&#xff0c;蓝牙模块怎能少呢&#xff1f; 蓝牙模块广泛应用在各种电子器件&#xff0c;比如手机、蓝牙耳…

2 月 3 日算法练习-数论

简单数论 思路&#xff1a;各个相邻数的差值求最大公约数得到 d&#xff0c;然后就能求出最少项数。 c17用gcd&#xff0c;c11 用_gcd #include<bits/stdc.h> using namespace std; using ll long long; const int N 1e5 10; ll a[N]; int n; int main( ){cin>>…

【网站项目】030小学生课外知识学习网站

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

Vue3.3新特新和Vue3-Pinia

文章目录 1.Vue3.3新特性 - defineOptionsVue3.3新特性 - defineModel3.Pinia快速入门4.手动添加Pinia到Vue项目5.Vue3 - Pinia的基本语法6.action的异步实现7.Vue3-Pinia-storeToRefs方法8.Pinia持久化插件安装用法 1.Vue3.3新特性 - defineOptions 背景说明 有<script se…

ELAdmin后台启动

版本选择 ELAdmin官网地址&#xff1a;https://eladmin.vip/ 有 JPA 和 MyBatis两个版本&#xff0c;之前只有 JPA&#xff0c;考虑到国内复杂的业务情况增加了 MyBatis 版本。我最终也选择了使用 MyBatis版本。 代码 仓库地址&#xff1a;https://gitee.com/elunez/eladmin…

Python环境下基于辛几何模态分解的信号分解方法

基于辛几何的分析方法是一种保护相空间几何结构的新型分析方法&#xff0c;主要用于求解动力学和控制系统中矩阵或Hamilton矩阵的特征值问题&#xff0c;用来解决在动力学和控制系统理论的2n2n矩阵或哈密顿矩阵的特征值问题&#xff0c;已应用到结构损伤信号、奇异微分方程等系…

【C#】.net core 6.0 创建默认Web应用,以及默认结构讲解,适合初学者

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握。…