《图像处理》 图像细化

前言

图像细化算法又称之为Thinning Algorithms,或者骨架提取(skeleton)。该算法通常用于手写体数字的细化,输入的图像要求是黑白图像,即二值图像。从白色区域提取出该区域的中心线,中心线对于白色区域相当于骨架相对于人体,所以有时候也称之为图像骨架提取。

1.Zhang算法骨架提取

zhang算法是图像细化经典算法,出自《A Fast Parallel Algorithm for Thinning Digital Patterns》。给个下载链接。

该算法个人理解:
不断循环遍历和修改输入的图像,该图像只包含0,1。黑色像素点的值是0,白色像素点的值是1。当前的点是P(记成P1,或者Pij),那么该点的8个近邻点或者说8连通区域点则记成P2,P3,P4,P5,P6,P7,P8,P9。如下图所示,该图来自论文。
在这里插入图片描述
这个九宫格代表九个像素,像素值取值除了0就是1。每轮迭代又分为两个子迭代,先看第一个子迭代限制条件:
在这里插入图片描述
一共有(a)、(b)、(c)和(d)四个限制条件,其中第一个就是P1点8个近邻点像素相加的总和在[2,6]闭区间内。设置这个条件是为了保护骨架线的端点不被删除。
第二个条件就是将P2P3P4P5P6P7P8P9组成一串由0和1的编码或者说是字符,数其中“01”的个数。如下图所示,截图来自原文,有两组“01”,所以A(P1)=2。该条件是为了保护两个端点之间的点不被删除,即非端点。
在这里插入图片描述
条件(c)和(d)合起来就是P4=0或P6=0或者{P2=0且P8=0}。

同理,第二个子迭代前两个条件和第一个迭代一致,第三个和第四个迭代有点区别。
在这里插入图片描述

基于opencv实现的代码如下:

/**
* @brief 对输入图像进行细化,骨骼化
* @param src为输入图像,用cvThreshold函数处理过的8位灰度图像格式,元素中只有0与1,1代表有元素,0代表为空白
* @param maxIterations限制迭代次数,如果不进行限制,默认为-1,代表不限制迭代次数,直到获得最终结果
* @return 为对src细化后的输出图像,格式与src格式相同,元素中只有0与1,1代表有元素,0代表为空白
*/
cv::Mat thinImage(const cv::Mat& src, const int maxIterations = -1)
{
	assert(src.type() == CV_8UC1);
	cv::Mat dst;
	int width = src.cols;
	int height = src.rows;
	src.copyTo(dst);
	int count = 0;  //记录迭代次数  
	while (true)
	{
		count++;
		if (maxIterations != -1 && count > maxIterations) //限制次数并且迭代次数到达  
			break;
		std::vector<uchar*> mFlag; //用于标记需要删除的点  
		//对点标记  
		for (int i = 0; i < height; ++i)
		{
			uchar* p = dst.ptr<uchar>(i);
			for (int j = 0; j < width; ++j)
			{
				//如果满足四个条件,进行标记  
				//  p9 p2 p3  
				//  p8 p1 p4  
				//  p7 p6 p5  
				uchar p1 = p[j];
				if (p1 != 1) continue;
				uchar p4 = (j == width - 1) ? 0 : *(p + j + 1);
				uchar p8 = (j == 0) ? 0 : *(p + j - 1);
				uchar p2 = (i == 0) ? 0 : *(p - dst.step + j);
				uchar p3 = (i == 0 || j == width - 1) ? 0 : *(p - dst.step + j + 1);
				uchar p9 = (i == 0 || j == 0) ? 0 : *(p - dst.step + j - 1);
				uchar p6 = (i == height - 1) ? 0 : *(p + dst.step + j);
				uchar p5 = (i == height - 1 || j == width - 1) ? 0 : *(p + dst.step + j + 1);
				uchar p7 = (i == height - 1 || j == 0) ? 0 : *(p + dst.step + j - 1);
				if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6)
				{
					int ap = 0;
					if (p2 == 0 && p3 == 1) ++ap;
					if (p3 == 0 && p4 == 1) ++ap;
					if (p4 == 0 && p5 == 1) ++ap;
					if (p5 == 0 && p6 == 1) ++ap;
					if (p6 == 0 && p7 == 1) ++ap;
					if (p7 == 0 && p8 == 1) ++ap;
					if (p8 == 0 && p9 == 1) ++ap;
					if (p9 == 0 && p2 == 1) ++ap;

					if (ap == 1 && p2 * p4 * p6 == 0 && p4 * p6 * p8 == 0)
					{
						//标记  
						mFlag.push_back(p + j);
					}
				}
			}
		}

		//将标记的点删除  
		for (std::vector<uchar*>::iterator i = mFlag.begin(); i != mFlag.end(); ++i)
		{
			**i = 0;
		}

		//直到没有点满足,算法结束  
		if (mFlag.empty())
		{
			break;
		}
		else
		{
			mFlag.clear();//将mFlag清空  
		}

		//对点标记  
		for (int i = 0; i < height; ++i)
		{
			uchar* p = dst.ptr<uchar>(i);
			for (int j = 0; j < width; ++j)
			{
				//如果满足四个条件,进行标记  
				//  p9 p2 p3  
				//  p8 p1 p4  
				//  p7 p6 p5  
				uchar p1 = p[j];
				if (p1 != 1) continue;
				uchar p4 = (j == width - 1) ? 0 : *(p + j + 1);
				uchar p8 = (j == 0) ? 0 : *(p + j - 1);
				uchar p2 = (i == 0) ? 0 : *(p - dst.step + j);
				uchar p3 = (i == 0 || j == width - 1) ? 0 : *(p - dst.step + j + 1);
				uchar p9 = (i == 0 || j == 0) ? 0 : *(p - dst.step + j - 1);
				uchar p6 = (i == height - 1) ? 0 : *(p + dst.step + j);
				uchar p5 = (i == height - 1 || j == width - 1) ? 0 : *(p + dst.step + j + 1);
				uchar p7 = (i == height - 1 || j == 0) ? 0 : *(p + dst.step + j - 1);

				if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6)
				{
					int ap = 0;
					if (p2 == 0 && p3 == 1) ++ap;
					if (p3 == 0 && p4 == 1) ++ap;
					if (p4 == 0 && p5 == 1) ++ap;
					if (p5 == 0 && p6 == 1) ++ap;
					if (p6 == 0 && p7 == 1) ++ap;
					if (p7 == 0 && p8 == 1) ++ap;
					if (p8 == 0 && p9 == 1) ++ap;
					if (p9 == 0 && p2 == 1) ++ap;

					if (ap == 1 && p2 * p4 * p8 == 0 && p2 * p6 * p8 == 0)
					{
						//标记  
						mFlag.push_back(p + j);
					}
				}
			}
		}

		//将标记的点删除  
		for (std::vector<uchar*>::iterator i = mFlag.begin(); i != mFlag.end(); ++i)
		{
			**i = 0;
		}

		//直到没有点满足,算法结束  
		if (mFlag.empty())
		{
			break;
		}
		else
		{
			mFlag.clear();//将mFlag清空  
		}
	}
	return dst;
}

2.基于dlib的骨架提取

dlib是一个非常强大的图像处理和深度学习库,官方网址请点击。这么好用的库,编译起来也不麻烦,请参考这个教程完成编译。本人VS2019,CMAKE3.24.0能够顺利编译使用。

骨架提取代码:

// 读取图像
    dlib::array2d<unsigned char> image;
    dlib::load_image(image, "D:/Speed/Net/deepout.png");

    // 进行图像骨架化
    dlib::skeleton(image);

    // 保存骨架化后的图像
    //dlib::save_png(image, "D:/Speed/Net/deepout.png");

    cv::Mat dst = dlib::toMat(image);

3. 查表法

查表法提取骨架方法参加地址。其实查表法无外乎还是迭代图像中像素,并且结合当前像素点p和其8个近邻点来处理。其实对于任何一个像素p,其周围8个点无非是0或者1(非0)。那么根据以前高中学的排列组合知识,一共有2的8次方种可能性,即256种可能性。再进一步来说,一个像素点其周围领域的取值情况是可以穷尽的。那么就需要对周围8个像素进行编号,使得最终对应于256种情况中的一种。如下图右侧的九宫格所示,其中8个领域中任意一个或者多个数相加,不会存在重复的情况,而且能够通过任意1个或者多个格子里的数值相加得到的数字取值恰好是1~256。
在这里插入图片描述
4.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/379039.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于轻量级模型YOLOX-Nano的菜品识别系统

工程Gitee地址&#xff1a; https://gitee.com/zhong-liangtang/ncnn-android-yolox-nano 一、YOLOX简介 YOLOX是一个在2021年被旷视科技公司提出的高性能且无锚框&#xff08;Anchor-free&#xff09;的检测器&#xff0c;在YOLO系列的基础上吸收近年来目标检测学术界的最新…

STM32--SPI通信协议(3)SPI通信外设

前言 硬件SPI&#xff1a;通过硬件电路实现&#xff0c;所以硬件SPI速度更快&#xff0c;有专门的寄存器和 库函数 &#xff0c;使用起来更方便。 软件SPI&#xff1a;也称模拟SPI&#xff0c;通过程序控制IO口电平模拟SPI时序实现&#xff0c;需要程序不断控制IO电平翻转&am…

Python 数据分析(PYDA)第三版(二)

原文&#xff1a;wesmckinney.com/book/ 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 四、NumPy 基础知识&#xff1a;数组和向量化计算 原文&#xff1a;wesmckinney.com/book/numpy-basics 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 此开放访问网络版…

Maven私服部署与JAR文件本地安装

Nexus3 是一个仓库管理器&#xff0c;它极大地简化了本地内部仓库的维护和外部仓库的访问。 平常我们在获取 maven 仓库资源的时候&#xff0c;都是从 maven 的官方&#xff08;或者国内的镜像&#xff09;获取。团队的多人员同样的依赖都要从远程获取一遍&#xff0c;从网络方…

Cilium CNI深度指南

Cilium是基于eBPF的功能强大的CNI插件&#xff0c;为云原生环境提供了强大的网络和安全支持。原文: Cilium CNI: A Comprehensive Deep Dive Guide for Networking and Security Enthusiasts! &#x1f313;简介 欢迎阅读为网络和安全爱好者提供的全面深入的指南&#xff01; 本…

PCIe学习笔记(1)Hot-Plug机制

文章目录 Hot-Plug InitHot Add FlowSurprise Remove FlowNPEM Flow Hot-Plug Init PCIe hot-plug是一种支持在不关机情况下从支持的插槽添加或删除设备的功能&#xff0c;PCIe架构定义了一些寄存器以支持原生热插拔。相关寄存器主要分布在Device Capabilities, Slot Capabili…

进程间通信(5):信号灯集

信号灯也叫信号量&#xff0c;是不同进程间或一个给定进程内部不同线程间同步的机制。 信号灯集为信号量的集合&#xff0c;实现同步、互斥机制&#xff0c;配合共享内存使用&#xff0c;解决资源竞争问题。 函数&#xff1a;semget、semctl、semop 实现流程&#xff1a; 1…

《Git 简易速速上手小册》第5章:高级 Git 技巧(2024 最新版)

文章目录 5.1 交互式暂存5.1.1 基础知识讲解5.1.2 重点案例&#xff1a;为 Python 项目分阶段提交5.1.3 拓展案例 1&#xff1a;细粒度控制更改5.1.4 拓展案例 2&#xff1a;处理遗漏的更改 5.2 使用 Rebase 优化提交历史5.2.1 基础知识讲解5.2.2 重点案例&#xff1a;整理 Pyt…

【Java】eclipse连接MySQL数据库使用笔记(自用)

注意事项 相关教程&#xff1a;java连接MySQL数据库_哔哩哔哩_bilibilijava连接MySQL数据库, 视频播放量 104662、弹幕量 115、点赞数 1259、投硬币枚数 515、收藏人数 2012、转发人数 886, 视频作者 景苒酱, 作者简介 有时任由其飞翔&#xff0c;有时禁锢其翅膀。粉丝群1&…

Vue中v-if和v-show区别

Vue中v-if和v-show是两个常用的指令&#xff0c;用于控制元素的显示和隐藏。虽然它们都能达到相同的效果&#xff0c;但在实现机制和使用场景上有一些区别。本文将详细介绍v-if和v-show的区别&#xff0c;并且通过示例代码来演示它们的使用。 首先&#xff0c;让我们来看一下v…

深度学习图像分类相关概念简析+个人举例2(CNN相关原理概念与计算)

&#xff08;2&#xff09;卷积神经网络&#xff1a;英文全称Convolutional Neural Network,简称 CNN 是一种常用于图像分类的深度学习模型&#xff0c;其主要特点是包含了卷积层和池化层&#xff0c;能够提取图像的局部特征。输入层、卷积层、池化层、全连接层和输出层都是卷积…

不必为发“压岁钱”或“红包”烦恼

中国人的民俗——过年要发“压岁钱”&#xff0c;也称发“ 红包 ”&#xff0c;时间确定在除夕夜12点正。因为按照传统观念&#xff0c;除夕夜是阴阳交替重要时刻&#xff1b;发“压岁钱”&#xff0c;也代表着辟邪驱鬼、保佑平安。“岁”字的谐音“祟”&#xff0c;即灾祸&…

Win10系统启动盘制作

前面简单介绍了操作系统&#xff0c;但是怎样将操作系统安装到磁盘上呢。 一、操作系统引导 电脑启动大致流程&#xff1a; 预引导阶段&#xff1a;计算机通电后&#xff0c;系统自检&#xff0c;检查硬件是否正常。 引导阶段&#xff1a;BIOS或EFI在完成基本的硬件检测和平台初…

【GAMES101】Lecture 19 相机

目录 相机 视场 Field of View (FOV) 曝光&#xff08;Exposure&#xff09; 感光度&#xff08;ISO&#xff09; 光圈 快门 相机 成像可以通过我们之前学过的光栅化成像和光线追踪成像来渲染合成&#xff0c;也可以用相机拍摄成像 今天就来学习一下相机是如何成像的…

【模板初阶】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 1. 泛型编程 2. 函数模板 2.1 函数模板概念 2.2 函数模板格式 2.3 函数模板的原理 2.4 函数模板的实例化 2.5 模板参数的匹配原则 3. 类模板 3.1 类模板的定义…

夜天之书 #95 GreptimeDB 社群观察报告

GreptimeDB 是格睿科技&#xff08;Greptime&#xff09;公司研发的一款开源时序数据库&#xff0c;其源代码[1]在 GitHub 平台公开发布。 https://github.com/GreptimeTeam/greptimedb 我从 2022 年开始知道有 GreptimeDB 这个项目。2023 年&#xff0c;我注意到他们的 Commun…

Spring Boot + 七牛OSS: 简化云存储集成

引言 Spring Boot 是一个非常流行的、快速搭建应用的框架&#xff0c;它无需大量的配置即可运行起来&#xff0c;而七牛云OSS提供了稳定高效的云端对象存储服务。利用两者的优势&#xff0c;可以为应用提供强大的文件存储功能。 为什么选择七牛云OSS? 七牛云OSS提供了高速的…

【vscode】windows11在vscode终端控制台中打印console.log()出现中文乱码问题解决

1. 问题描述 在前端开发过程中使用vscode编写node.js&#xff0c;需要在控制台中打印一些中文信息&#xff0c;但是一直出现中文乱码问题&#xff0c;英文和数字都显示正常。在网上试了很多设置的办法&#xff0c;最终找到windos11设置中解决。 2. 原因 首先打开控制台&…

GEE入门篇|栅格数据集概述(四):其他卫星产品

目录 1.甲烷数据集 2.天气及气候数据 3.预先分类的土地用途和土地覆盖数据集 3.1ESA WorldCover 3.2 全球森林变化数据集 卫星还可以收集有关气候、天气和大气中存在的各种化合物的信息。这些卫星利用部分电磁频谱&#xff0c;以及不同物体和化合物在不同波长的阳光照射下…

Verilog刷题笔记22

题目&#xff1a; Build a priority encoder for 8-bit inputs. Given an 8-bit vector, the output should report the first (least significant) bit in the vector that is 1. Report zero if the input vector has no bits that are high. For example, the input 8’b100…