[当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解

您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安全也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~

前文讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。这篇文章将以中文语料为主,介绍中文命名实体识别研究,并构建BiGRU-CRF模型实现。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!

由于上一篇文章详细讲解ATT&CK威胁情报采集、预处理、BiLSTM-CRF实体识别内容,这篇文章不再详细介绍,本文将在上一篇文章基础上补充:

  • 中文命名实体识别如何实现,以字符为主
  • 以中文CSV文件为语料,介绍其处理过程,中文威胁情报类似
  • 构建BiGRU-CRF模型实现中文实体识别

版本信息:

  • keras-contrib V2.0.8
  • keras V2.3.1
  • tensorflow V2.2.0

常见框架如下图所示:

  • https://aclanthology.org/2021.acl-short.4/

在这里插入图片描述

在这里插入图片描述

文章目录

  • 一.ATT&CK数据采集
  • 二.数据预处理
  • 三.基于BiLSTM-CRF的实体识别
    • 1.安装keras-contrib
    • 2.安装Keras
    • 3.中文实体识别
  • 四.基于BiGRU-CRF的实体识别
  • 五.总结

作者作为网络安全的小白,分享一些自学基础教程给大家,主要是在线笔记,希望您们喜欢。同时,更希望您能与我一起操作和进步,后续将深入学习AI安全和系统安全知识并分享相关实验。总之,希望该系列文章对博友有所帮助,写文不易,大神们不喜勿喷,谢谢!如果文章对您有帮助,将是我创作的最大动力,点赞、评论、私聊均可,一起加油喔!

前文推荐:

  • [当人工智能遇上安全] 1.人工智能真的安全吗?浙大团队外滩大会分享AI对抗样本技术
  • [当人工智能遇上安全] 2.清华张超老师 - GreyOne: Discover Vulnerabilities with Data Flow Sensitive Fuzzing
  • [当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享
  • [当人工智能遇上安全] 4.基于机器学习的恶意代码检测技术详解
  • [当人工智能遇上安全] 5.基于机器学习算法的主机恶意代码识别研究
  • [当人工智能遇上安全] 6.基于机器学习的入侵检测和攻击识别——以KDD CUP99数据集为例
  • [当人工智能遇上安全] 7.基于机器学习的安全数据集总结
  • [当人工智能遇上安全] 8.基于API序列和机器学习的恶意家族分类实例详解
  • [当人工智能遇上安全] 9.基于API序列和深度学习的恶意家族分类实例详解
  • [当人工智能遇上安全] 10.威胁情报实体识别之基于BiLSTM-CRF的实体识别万字详解
  • [当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解

作者的github资源:

  • https://github.com/eastmountyxz/When-AI-meet-Security
  • https://github.com/eastmountyxz/AI-Security-Paper

一.ATT&CK数据采集

了解威胁情报的同学,应该都熟悉Mitre的ATT&CK网站,前文已介绍如何采集该网站APT组织的攻击技战术数据。网址如下:

  • http://attack.mitre.org

在这里插入图片描述

第一步,通过ATT&CK网站源码分析定位APT组织名称,并进行系统采集。

在这里插入图片描述

安装BeautifulSoup扩展包,该部分代码如下所示:

在这里插入图片描述

01-get-aptentity.py

#encoding:utf-8
#By:Eastmount CSDN
import re
import requests
from lxml import etree
from bs4 import BeautifulSoup
import urllib.request

#-------------------------------------------------------------------------------------------
#获取APT组织名称及链接

#设置浏览器代理,它是一个字典
headers = {
    'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \
        AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36'
}
url = 'https://attack.mitre.org/groups/'

#向服务器发出请求
r = requests.get(url = url, headers = headers).text

#解析DOM树结构
html_etree = etree.HTML(r)
names = html_etree.xpath('//*[@class="table table-bordered table-alternate mt-2"]/tbody/tr/td[2]/a/text()')
print (names)
print(len(names),names[0])
filename = []
for name in names:
    filename.append(name.strip())
print(filename)

#链接
urls = html_etree.xpath('//*[@class="table table-bordered table-alternate mt-2"]/tbody/tr/td[2]/a/@href')
print(urls)
print(len(urls), urls[0])
print("\n")

此时输出结果如下图所示,包括APT组织名称及对应的URL网址。

在这里插入图片描述

第二步,访问APT组织对应的URL,采集详细信息(正文描述)。

在这里插入图片描述

第三步,采集对应的技战术TTPs信息,其源码定位如下图所示。

在这里插入图片描述

第四步,编写代码完成威胁情报数据采集。01-spider-mitre.py 完整代码如下:

#encoding:utf-8
#By:Eastmount CSDN
import re
import requests
from lxml import etree
from bs4 import BeautifulSoup
import urllib.request

#-------------------------------------------------------------------------------------------
#获取APT组织名称及链接

#设置浏览器代理,它是一个字典
headers = {
    'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \
        AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36'
}
url = 'https://attack.mitre.org/groups/'

#向服务器发出请求
r = requests.get(url = url, headers = headers).text
#解析DOM树结构
html_etree = etree.HTML(r)
names = html_etree.xpath('//*[@class="table table-bordered table-alternate mt-2"]/tbody/tr/td[2]/a/text()')
print (names)
print(len(names),names[0])
#链接
urls = html_etree.xpath('//*[@class="table table-bordered table-alternate mt-2"]/tbody/tr/td[2]/a/@href')
print(urls)
print(len(urls), urls[0])
print("\n")

#-------------------------------------------------------------------------------------------
#获取详细信息
k = 0
while k<len(names):
    filename = str(names[k]).strip() + ".txt"
    url = "https://attack.mitre.org" + urls[k]
    print(url)

    #获取正文信息
    page = urllib.request.Request(url, headers=headers)
    page = urllib.request.urlopen(page)
    contents = page.read()
    soup = BeautifulSoup(contents, "html.parser")

    #获取正文摘要信息
    content = ""
    for tag in soup.find_all(attrs={"class":"description-body"}):
        #contents = tag.find("p").get_text()
        contents = tag.find_all("p")
        for con in contents:
            content += con.get_text().strip() + "###\n"  #标记句子结束(第二部分分句用)
    #print(content)

    #获取表格中的技术信息
    for tag in soup.find_all(attrs={"class":"table techniques-used table-bordered mt-2"}):
        contents = tag.find("tbody").find_all("tr")
        for con in contents:
            value = con.find("p").get_text()           #存在4列或5列 故获取p值
            #print(value)
            content += value.strip() + "###\n"         #标记句子结束(第二部分分句用)

    #删除内容中的参考文献括号 [n]
    result = re.sub(u"\\[.*?]", "", content)
    print(result)

    #文件写入
    filename = "Mitre//" + filename
    print(filename)
    f = open(filename, "w", encoding="utf-8")
    f.write(result)
    f.close()    
    k += 1

输出结果如下图所示,共整理100个组织信息。

在这里插入图片描述

在这里插入图片描述

每个文件显示内容如下图所示:

在这里插入图片描述

数据标注采用暴力的方式进行,即定义不同类型的实体名称并利用BIO的方式进行标注。通过ATT&CK技战术方式进行标注,后续可以结合人工校正,同时可以定义更多类型的实体。

  • BIO标注
实体名称实体数量示例
APT攻击组织128APT32、Lazarus Group
攻击漏洞56CVE-2009-0927
区域位置72America、Europe
攻击行业34companies、finance
攻击手法65C&C、RAT、DDoS
利用软件487-Zip、Microsoft
操作系统10Linux、Windows

更多标注和预处理请查看上一篇文章。

  • [当人工智能遇上安全] 10.威胁情报实体识别之基于BiLSTM-CRF的实体识别万字详解

常见的数据标注工具:

  • 图像标注:labelme,LabelImg,Labelbox,RectLabel,CVAT,VIA
  • 半自动ocr标注:PPOCRLabel
  • NLP标注工具:labelstudio

温馨提示:
由于网站的布局会不断变化和优化,因此读者需要掌握数据采集及语法树定位的基本方法,以不变应万变。此外,读者可以尝试采集所有锻炼甚至是URL跳转链接内容,请读者自行尝试和拓展!


二.数据预处理

假设存在已经采集和标注好的中文数据集,通常采用按字(Char)分隔,如下图所示,古籍为数据集,当然中文威胁情报也类似。

在这里插入图片描述

数据集划分为训练集和测试集。

在这里插入图片描述

接下来,我们需要读取CSV数据集,并构建汉字词典。关键函数:

  • read_csv(filename):读取语料CSV文件
  • count_vocab(words,labels):统计不重复词典
  • build_vocab():构造词典

完整代码如下:

#encoding:utf-8
# By: Eastmount WuShuai 2024-02-05
import re
import os
import csv
import sys

train_data_path = "data/train.csv"
test_data_path = "data/test.csv"
char_vocab_path = "char_vocabs.txt"    #字典文件
special_words = ['<PAD>', '<UNK>']     #特殊词表示
final_words = []                       #统计词典(不重复出现)
final_labels = []                      #统计标记(不重复出现)

#语料文件读取函数
def read_csv(filename):
    words = []
    labels = []
    with open(filename,encoding='utf-8') as csvfile:
        reader = csv.reader(csvfile)
        for row in reader:
            if len(row)>0: #存在空行报错越界
                word,label = row[0],row[1]
                words.append(word)
                labels.append(label)
    return words,labels

#统计不重复词典
def count_vocab(words,labels):
    fp = open(char_vocab_path, 'a') #注意a为叠加(文件只能运行一次)
    k = 0
    while k<len(words):
        word = words[k]
        label = labels[k]
        if word not in final_words:
            final_words.append(word)
            fp.writelines(word + "\n")
        if label not in final_labels:
            final_labels.append(label)
        k += 1
    fp.close()
   
#读取数据并构造原文字典(第一列)
def build_vocab():
    words,labels = read_csv(train_data_path)
    print(len(words),len(labels),words[:8],labels[:8])
    count_vocab(words,labels)
    print(len(final_words),len(final_labels))

    #测试集
    words,labels = read_csv(test_data_path)
    print(len(words),len(labels))
    count_vocab(words,labels)
    print(len(final_words),len(final_labels))
    print(final_labels)

    #labels生成字典
    label_dict = {}
    k = 0
    for value in final_labels:
        label_dict[value] = k
        k += 1
    print(label_dict)
    return label_dict
    
if __name__ == '__main__':
    build_vocab()

输出结果如下,包括训练集数量,并输出前8行文字及标注,以及不重复的汉字个数,以及实体类别14个。

['晉', '樂', '王', '鮒', '曰', ':', '', '小'] 
['S-LOC', 'B-PER', 'I-PER', 'E-PER', 'O', 'O', '', 'O']
xxx 14

输出类别如下。

['S-LOC', 'B-PER', 'I-PER', 'E-PER', 'O', '', 'B-LOC', 
 'E-LOC', 'S-PER', 'S-TIM', 'B-TIM', 'E-TIM', 'I-TIM', 'I-LOC']

接着实体类别进行编码处理,输出结果如下:

{'S-LOC': 0, 'B-PER': 1, 'I-PER': 2, 'E-PER': 3, 'O': 4, '': 5, 'B-LOC': 6, 
 'E-LOC': 7, 'S-PER': 8, 'S-TIM': 9, 'B-TIM': 10, 'E-TIM': 11, 'I-TIM': 12, 'I-LOC': 13}

需要注意:在实体识别中,我们可以通过调用该函数获取识别的实体类别,关键代码如下。然而,由于真实分析中“O”通常建议编码为0,因此建议重新定义字典编码,更方便我们撰写代码,尤其是中文本遇到换句处理时,上述编码会乱序。

#原计划
from get_data import build_vocab #调取第一阶段函数
label2idx = build_vocab()

#实际情况
label2idx = {'O': 0,
             'S-LOC': 1, 'B-LOC': 2,  'I-LOC': 3,  'E-LOC': 4,
             'S-PER': 5, 'B-PER': 6,  'I-PER': 7,  'E-PER': 8,
             'S-TIM': 9, 'B-TIM': 10, 'E-TIM': 11, 'I-TIM': 12
             }
....
sent_ids = [vocab2idx[char] if char in vocab2idx else vocab2idx['<UNK>'] for char in sent_]
tag_ids = [label2idx[label] if label in label2idx else 0 for label in tag_]

最终生成词典char_vocabs.txt。

在这里插入图片描述


三.基于BiLSTM-CRF的实体识别

1.安装keras-contrib

CRF模型作者安装的是 keras-contrib

第一步,如果读者直接使用“pip install keras-contrib”可能会报错,远程下载也报错。

  • pip install git+https://www.github.com/keras-team/keras-contrib.git

甚至会报错 ModuleNotFoundError: No module named ‘keras_contrib’。

在这里插入图片描述

第二步,作者从github中下载该资源,并在本地安装。

  • https://github.com/keras-team/keras-contrib
  • keras-contrib 版本:2.0.8
git clone https://www.github.com/keras-team/keras-contrib.git
cd keras-contrib
python setup.py install

安装成功如下图所示:

在这里插入图片描述

读者可以从我的资源中下载代码和扩展包。

  • https://github.com/eastmountyxz/When-AI-meet-Security

2.安装Keras

同样需要安装keras和TensorFlow扩展包。

在这里插入图片描述

如果TensorFlow下载太慢,可以设置清华大学镜像,实际安装2.2版本。

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install tensorflow==2.2

在这里插入图片描述

在这里插入图片描述


3.中文实体识别

第一步,数据预处理,包括BIO标记及词典转换。

#encoding:utf-8
# By: Eastmount WuShuai 2024-02-05
# 参考:https://github.com/huanghao128/zh-nlp-demo
import re
import os
import csv
import sys
from get_data import build_vocab #调取第一阶段函数

#------------------------------------------------------------------------
#第一步 数据预处理
#------------------------------------------------------------------------
train_data_path = "data/train.csv"
test_data_path = "data/test.csv"
val_data_path = "data/val.csv"
char_vocab_path = "char_vocabs.txt"   #字典文件(防止多次写入仅读首次生成文件)
special_words = ['<PAD>', '<UNK>']     #特殊词表示
final_words = []                       #统计词典(不重复出现)
final_labels = []                      #统计标记(不重复出现)

#BIO标记的标签 字母O初始标记为0
#label2idx = build_vocab()
label2idx = {'O': 0,
             'S-LOC': 1, 'B-LOC': 2,  'I-LOC': 3,  'E-LOC': 4,
             'S-PER': 5, 'B-PER': 6,  'I-PER': 7,  'E-PER': 8,
             'S-TIM': 9, 'B-TIM': 10, 'E-TIM': 11, 'I-TIM': 12
             }
print(label2idx)

#索引和BIO标签对应
idx2label = {idx: label for label, idx in label2idx.items()}
print(idx2label)

#读取字符词典文件
with open(char_vocab_path, "r") as fo:
    char_vocabs = [line.strip() for line in fo]
char_vocabs = special_words + char_vocabs
print(char_vocabs)

#字符和索引编号对应
idx2vocab = {idx: char for idx, char in enumerate(char_vocabs)}
vocab2idx = {char: idx for idx, char in idx2vocab.items()}
print(idx2vocab)
print(vocab2idx)

输出结果如下所示:

{'O': 0, 'S-LOC': 1, 'B-LOC': 2, 'I-LOC': 3, 'E-LOC': 4, 'S-PER': 5, 'B-PER': 6, 
 'I-PER': 7, 'E-PER': 8, 'S-TIM': 9, 'B-TIM': 10, 'E-TIM': 11, 'I-TIM': 12}
{0: 'O', 1: 'S-LOC', 2: 'B-LOC', 3: 'I-LOC', 4: 'E-LOC', 5: 'S-PER', 6: 'B-PER', 
 7: 'I-PER', 8: 'E-PER', 9: 'S-TIM', 10: 'B-TIM', 11: 'E-TIM', 12: 'I-TIM'}

['<PAD>', '<UNK>', '晉', '樂', '王', '鮒', '曰', ':', '', '小', '旻', ...]
{0: '<PAD>', 1: '<UNK>', 2: '晉', 3: '樂', 4: '王', 5: '鮒', 6: '曰', 7: ':', 8: '', 9: '小', 10: '旻', ... ]
{'<PAD>': 0, '<UNK>': 1, '晉': 2, '樂': 3, '王': 4, '鮒': 5, '曰': 6, ':': 7, '': 8, '小': 9, '旻': 10, ... ]

第二步,读取CSV数据,并获取汉字、标记对应的下标,以下标存储。

#------------------------------------------------------------------------
#第二步 数据读取
#------------------------------------------------------------------------
def read_corpus(corpus_path, vocab2idx, label2idx):
    datas, labels = [], []
    with open(corpus_path, encoding='utf-8') as csvfile:
        reader = csv.reader(csvfile)
        sent_, tag_ = [], []
        for row in reader:
            word,label = row[0],row[1]
            if word!="" and label!="":   #断句
                sent_.append(word)
                tag_.append(label)
                """
                print(sent_) #['晉', '樂', '王', '鮒', '曰', ':']
                print(tag_)  #['S-LOC', 'B-PER', 'I-PER', 'E-PER', 'O', 'O']
                """
            else:                        #vocab2idx[0] => <PAD>
                sent_ids = [vocab2idx[char] if char in vocab2idx else vocab2idx['<UNK>'] for char in sent_]
                tag_ids = [label2idx[label] if label in label2idx else 0 for label in tag_]
                """
                print(sent_ids,tag_ids)
                for idx,idy in zip(sent_ids,tag_ids):
                    print(idx2vocab[idx],idx2label[idy])
                #[2, 3, 4, 5, 6, 7] [1, 6, 7, 8, 0, 0]
                #晉 S-LOC 樂 B-PER 王 I-PER 鮒 E-PER 曰 O : O
                """
                datas.append(sent_ids) #按句插入列表
                labels.append(tag_ids)
                sent_, tag_ = [], []
    return datas, labels

#原始数据
train_datas_, train_labels_ = read_corpus(train_data_path, vocab2idx, label2idx)
test_datas_, test_labels_ = read_corpus(test_data_path, vocab2idx, label2idx)

#输出测试结果 (第五句语料)
print(len(train_datas_),len(train_labels_),len(test_datas_),len(test_labels_))
print(train_datas_[5])
print([idx2vocab[idx] for idx in train_datas_[5]])
print(train_labels_[5])
print([idx2label[idx] for idx in train_labels_[5]])

输出结果如下,获取汉字和BIO标记的下标。

[2, 3, 4, 5, 6, 7] [1, 6, 7, 8, 0, 0]
晉 S-LOC 樂 B-PER 王 I-PER 鮒 E-PER 曰 O : O

其中,第5行数据示例如下:

[46, 47, 48, 47, 49, 50, 51, 52, 53, 54, 55, 56]
['齊', '、', '衛', '、', '陳', '大', '夫', '其', '不', '免', '乎', '!']
[1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
['S-LOC', 'O', 'S-LOC', 'O', 'S-LOC', 'O', 'O', 'O', 'O', 'O', 'O', 'O']

对应语料如下:

在这里插入图片描述


第三步,数据填充和one-hot编码。

#------------------------------------------------------------------------
#第三步 数据填充 one-hot编码
#------------------------------------------------------------------------
import keras
from keras.preprocessing import sequence

MAX_LEN = 100
VOCAB_SIZE = len(vocab2idx)
CLASS_NUMS = len(label2idx)

#padding data
print('padding sequences')
train_datas = sequence.pad_sequences(train_datas_, maxlen=MAX_LEN)
train_labels = sequence.pad_sequences(train_labels_, maxlen=MAX_LEN)
test_datas = sequence.pad_sequences(test_datas_, maxlen=MAX_LEN)
test_labels = sequence.pad_sequences(test_labels_, maxlen=MAX_LEN)
print('x_train shape:', train_datas.shape)
print('x_test shape:', test_datas.shape)

#encoder one-hot
train_labels = keras.utils.to_categorical(train_labels, CLASS_NUMS)
test_labels = keras.utils.to_categorical(test_labels, CLASS_NUMS)
print('trainlabels shape:', train_labels.shape)
print('testlabels shape:', test_labels.shape)

输出结果如下所示:

padding sequences
x_train shape: (xxx, 100)
x_test shape: (xxx, 100)
trainlabels shape: (xxx, 100, 13)
testlabels shape: (xxx, 100, 13)

编码示例如下:

[   0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0 2163  410  294
  980   18]

第四步,构建BiLSTM+CRF模型。

#------------------------------------------------------------------------
#第四步 构建BiLSTM+CRF模型
# pip install git+https://www.github.com/keras-team/keras-contrib.git
# 安装过程详见文件夹截图
# ModuleNotFoundError: No module named ‘keras_contrib’
#------------------------------------------------------------------------
import numpy as np
from keras.models import Sequential
from keras.models import Model
from keras.layers import Masking, Embedding, Bidirectional, LSTM, \
     Dense, Input, TimeDistributed, Activation
from keras_contrib.layers import CRF
from keras_contrib.losses import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy
from keras import backend as K
from keras.models import load_model
from sklearn import metrics

EPOCHS = 2
EMBED_DIM = 128
HIDDEN_SIZE = 64
MAX_LEN = 100
VOCAB_SIZE = len(vocab2idx)
CLASS_NUMS = len(label2idx)
K.clear_session()
print(VOCAB_SIZE, CLASS_NUMS) #3319 13

#模型构建 BiLSTM-CRF
inputs = Input(shape=(MAX_LEN,), dtype='int32')
x = Masking(mask_value=0)(inputs)
x = Embedding(VOCAB_SIZE, EMBED_DIM, mask_zero=False)(x) #修改掩码False
x = Bidirectional(LSTM(HIDDEN_SIZE, return_sequences=True))(x)
x = TimeDistributed(Dense(CLASS_NUMS))(x)
outputs = CRF(CLASS_NUMS)(x)
model = Model(inputs=inputs, outputs=outputs)
model.summary()

输出结果如下图所示,显示该模型的结构。

在这里插入图片描述


第五步,模型训练和测试。flag标记变量分别设置为“train”和“test”。

flag = "train"
if flag=="train":
    #模型训练
    model.compile(loss=crf_loss, optimizer='adam', metrics=[crf_viterbi_accuracy])
    model.fit(train_datas, train_labels, epochs=EPOCHS, verbose=1, validation_split=0.1)
    score = model.evaluate(test_datas, test_labels, batch_size=256)
    print(model.metrics_names)
    print(score)
    model.save("bilstm_ner_model.h5")
elif flag=="test":
    #训练模型
    char_vocab_path = "char_vocabs_.txt"      #字典文件
    model_path = "bilstm_ner_model.h5"        #模型文件
    ner_labels = label2idx
    special_words = ['<PAD>', '<UNK>']
    MAX_LEN = 100
    
    #预测结果
    model = load_model(model_path, custom_objects={'CRF': CRF}, compile=False)    
    y_pred = model.predict(test_datas)
    y_labels = np.argmax(y_pred, axis=2)         #取最大值
    z_labels = np.argmax(test_labels, axis=2)    #真实值
    word_labels = test_datas                     #真实值
    
    k = 0
    final_y = []       #预测结果对应的标签
    final_z = []       #真实结果对应的标签
    final_word = []    #对应的特征单词
    while k<len(y_labels):
        y = y_labels[k]
        for idx in y:
            final_y.append(idx2label[idx])
        #print("预测结果:", [idx2label[idx] for idx in y])
        
        z = z_labels[k]
        for idx in z:    
            final_z.append(idx2label[idx])
        #print("真实结果:", [idx2label[idx] for idx in z])
        
        word = word_labels[k]
        for idx in word:
            final_word.append(idx2vocab[idx])
        k += 1
    print("最终结果大小:", len(final_y),len(final_z))
    
    n = 0
    numError = 0
    numRight = 0
    while n<len(final_y):
        if final_y[n]!=final_z[n] and final_z[n]!='O':
            numError += 1
        if final_y[n]==final_z[n] and final_z[n]!='O':
            numRight += 1
        n += 1
    print("预测错误数量:", numError)
    print("预测正确数量:", numRight)
    print("Acc:", numRight*1.0/(numError+numRight))
    print("预测单词:", [idx2vocab[idx] for idx in test_datas_[5]])
    print("真实结果:", [idx2label[idx] for idx in test_labels_[5]])
    print("预测结果:", [idx2label[idx] for idx in y_labels[5]][-len(test_datas_[5]):])

训练结果如下所示:

Epoch 1/2
    32/8439 [..............................] - ETA: 6:51 - loss: 2.5549 - crf_viterbi_accuracy: 3.1250e-04
    64/8439 [..............................] - ETA: 3:45 - loss: 2.5242 - crf_viterbi_accuracy: 0.1142
    8439/8439 [==============================] - 118s 14ms/step - loss: 0.1833 - crf_viterbi_accuracy: 0.9591 - val_loss: 0.0688 - val_crf_viterbi_accuracy: 0.9820
Epoch 2/10
    32/8439 [..............................] - ETA: 19s - loss: 0.0644 - crf_viterbi_accuracy: 0.9825
    64/8439 [..............................] - ETA: 42s - loss: 0.0592 - crf_viterbi_accuracy: 0.9845
	...
['loss', 'crf_viterbi_accuracy']
[0.043232945389307574, 0.9868513941764832]

最终测试结果如下所示,由于作者数据集仅放了少量数据,且未进行调参比较,真实数据更多且效果会更好。

预测错误数量: 2183
预测正确数量: 2209
Acc: 0.5029599271402551

预测单词: ['冬', ',', '楚', '公', '子', '罷', '如', '晉', '聘', ',', '且', '涖', '盟', '。']
真实结果: ['O', 'O', 'B-PER', 'I-PER', 'I-PER', 'E-PER', 'O', 'S-LOC', 'O', 'O', 'O', 'O', 'O', 'O']
预测结果: ['O', 'O', 'B-PER', 'E-PER', 'E-PER', 'E-PER', 'O', 'S-LOC', 'O', 'O', 'O', 'O', 'O', 'O']

四.基于BiGRU-CRF的实体识别

接下来构建BiGRU-CRF代码,以完整代码为例,并将预测结果存储在CSV文件上。

#encoding:utf-8
# By: Eastmount WuShuai 2024-02-05
import re
import os
import csv
import sys
from get_data import build_vocab #调取第一阶段函数

#------------------------------------------------------------------------
#第一步 数据预处理
#------------------------------------------------------------------------
train_data_path = "data/train.csv"
test_data_path = "data/test.csv"
val_data_path = "data/val.csv"
char_vocab_path = "char_vocabs.txt"    #字典文件(防止多次写入仅读首次生成文件)
special_words = ['<PAD>', '<UNK>']     #特殊词表示
final_words = []                       #统计词典(不重复出现)
final_labels = []                      #统计标记(不重复出现)

#BIO标记的标签 字母O初始标记为0
#label2idx = build_vocab()
label2idx = {'O': 0,
             'S-LOC': 1, 'B-LOC': 2,  'I-LOC': 3,  'E-LOC': 4,
             'S-PER': 5, 'B-PER': 6,  'I-PER': 7,  'E-PER': 8,
             'S-TIM': 9, 'B-TIM': 10, 'E-TIM': 11, 'I-TIM': 12
             }

#索引和BIO标签对应
idx2label = {idx: label for label, idx in label2idx.items()}

#读取字符词典文件
with open(char_vocab_path, "r") as fo:
    char_vocabs = [line.strip() for line in fo]
char_vocabs = special_words + char_vocabs

#字符和索引编号对应
idx2vocab = {idx: char for idx, char in enumerate(char_vocabs)}
vocab2idx = {char: idx for idx, char in idx2vocab.items()}

#------------------------------------------------------------------------
#第二步 数据读取
#------------------------------------------------------------------------
def read_corpus(corpus_path, vocab2idx, label2idx):
    datas, labels = [], []
    with open(corpus_path, encoding='utf-8') as csvfile:
        reader = csv.reader(csvfile)
        sent_, tag_ = [], []
        for row in reader:
            word,label = row[0],row[1]
            if word!="" and label!="":   #断句
                sent_.append(word)
                tag_.append(label)
            else:                        #vocab2idx[0] => <PAD>
                sent_ids = [vocab2idx[char] if char in vocab2idx else vocab2idx['<UNK>'] for char in sent_]
                tag_ids = [label2idx[label] if label in label2idx else 0 for label in tag_]
                datas.append(sent_ids)   #按句插入列表
                labels.append(tag_ids)
                sent_, tag_ = [], []
    return datas, labels

#原始数据
train_datas_, train_labels_ = read_corpus(train_data_path, vocab2idx, label2idx)
test_datas_, test_labels_ = read_corpus(test_data_path, vocab2idx, label2idx)

#------------------------------------------------------------------------
#第三步 数据填充 one-hot编码
#------------------------------------------------------------------------
import keras
from keras.preprocessing import sequence

MAX_LEN = 100
VOCAB_SIZE = len(vocab2idx)
CLASS_NUMS = len(label2idx)

#padding data
print('padding sequences')
train_datas = sequence.pad_sequences(train_datas_, maxlen=MAX_LEN)
train_labels = sequence.pad_sequences(train_labels_, maxlen=MAX_LEN)
test_datas = sequence.pad_sequences(test_datas_, maxlen=MAX_LEN)
test_labels = sequence.pad_sequences(test_labels_, maxlen=MAX_LEN)

#encoder one-hot
train_labels = keras.utils.to_categorical(train_labels, CLASS_NUMS)
test_labels = keras.utils.to_categorical(test_labels, CLASS_NUMS)

#------------------------------------------------------------------------
#第四步 构建BiGRU+CRF模型
#------------------------------------------------------------------------
import numpy as np
from keras.models import Sequential
from keras.models import Model
from keras.layers import Masking, Embedding, Bidirectional, LSTM, GRU, \
     Dense, Input, TimeDistributed, Activation
from keras_contrib.layers import CRF
from keras_contrib.losses import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy
from keras import backend as K
from keras.models import load_model
from sklearn import metrics

EPOCHS = 2
EMBED_DIM = 128
HIDDEN_SIZE = 64
MAX_LEN = 100
VOCAB_SIZE = len(vocab2idx)
CLASS_NUMS = len(label2idx)
K.clear_session()
print(VOCAB_SIZE, CLASS_NUMS)

#模型构建 BiGRU-CRF
inputs = Input(shape=(MAX_LEN,), dtype='int32')
x = Masking(mask_value=0)(inputs)
x = Embedding(VOCAB_SIZE, EMBED_DIM, mask_zero=False)(x) #修改掩码False
x = Bidirectional(GRU(HIDDEN_SIZE, return_sequences=True))(x)
x = TimeDistributed(Dense(CLASS_NUMS))(x)
outputs = CRF(CLASS_NUMS)(x)
model = Model(inputs=inputs, outputs=outputs)
model.summary()

flag = "test"
if flag=="train":
    #模型训练
    model.compile(loss=crf_loss, optimizer='adam', metrics=[crf_viterbi_accuracy])
    model.fit(train_datas, train_labels, epochs=EPOCHS, verbose=1, validation_split=0.1)
    score = model.evaluate(test_datas, test_labels, batch_size=256)
    print(model.metrics_names)
    print(score)
    model.save("bigru_ner_model.h5")
elif flag=="test":
    #训练模型
    char_vocab_path = "char_vocabs_.txt"      #字典文件
    model_path = "bigru_ner_model.h5"         #模型文件
    ner_labels = label2idx
    special_words = ['<PAD>', '<UNK>']
    MAX_LEN = 100
    
    #预测结果
    model = load_model(model_path, custom_objects={'CRF': CRF}, compile=False)    
    y_pred = model.predict(test_datas)
    y_labels = np.argmax(y_pred, axis=2)         #取最大值
    z_labels = np.argmax(test_labels, axis=2)    #真实值
    word_labels = test_datas                     #真实值
    
    k = 0
    final_y = []       #预测结果对应的标签
    final_z = []       #真实结果对应的标签
    final_word = []    #对应的特征单词
    while k<len(y_labels):
        y = y_labels[k]
        for idx in y:
            final_y.append(idx2label[idx])
        z = z_labels[k]
        for idx in z:    
            final_z.append(idx2label[idx])
        word = word_labels[k]
        for idx in word:
            final_word.append(idx2vocab[idx])
        k += 1
    
    n = 0
    numError = 0
    numRight = 0
    while n<len(final_y):
        if final_y[n]!=final_z[n] and final_z[n]!='O':
            numError += 1
        if final_y[n]==final_z[n] and final_z[n]!='O':
            numRight += 1
        n += 1
    print("预测错误数量:", numError)
    print("预测正确数量:", numRight)
    print("Acc:", numRight*1.0/(numError+numRight))
    print("预测单词:", [idx2vocab[idx] for idx in test_datas_[5]])
    print("真实结果:", [idx2label[idx] for idx in test_labels_[5]])
    print("预测结果:", [idx2label[idx] for idx in y_labels[5]][-len(test_datas_[5]):])
    
    #文件存储
    fw = open("Final_BiGRU_CRF_Result.csv", "w", encoding="utf8", newline='')
    fwrite = csv.writer(fw)
    fwrite.writerow(['pre_label','real_label', 'word'])
    n = 0
    while n<len(final_y):
        fwrite.writerow([final_y[n],final_z[n],final_word[n]])
        n += 1
    fw.close()

输出结果如下所示:

['loss', 'crf_viterbi_accuracy']
[0.03543611364953834, 0.9894005656242371]

在这里插入图片描述

生成文件如下图所示:

在这里插入图片描述


五.总结

写到这里这篇文章就结束,希望对您有所帮助,后续将结合经典的Bert进行分享。忙碌的2024,真的很忙,项目本子论文毕业工作,等忙完后好好写几篇安全博客,感谢支持和陪伴,尤其是家人的鼓励和支持, 继续加油!

  • 一.ATT&CK数据采集
  • 二.数据预处理
  • 三.基于BiLSTM-CRF的实体识别
    1.安装keras-contrib
    2.安装Keras
    3.中文实体识别
  • 四.基于BiGRU-CRF的实体识别
  • 五.总结

人生路是一个个十字路口,一次次博弈,一次次纠结和得失组成。得失得失,有得有失,不同的选择,不一样的精彩。虽然累和忙,但看到小珞珞还是挺满足的,感谢家人的陪伴。望小珞能开心健康成长,爱你们喔,继续干活,加油!

在这里插入图片描述

(By:Eastmount 2024-02-07 夜于贵阳 http://blog.csdn.net/eastmount/ )


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/378818.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DMA直接内存访问,STM32实现高速数据传输使用配置

1、DMA运用场景 随着智能化、信息化的不断推进&#xff0c;嵌入式设备的数据处理量也呈现指数级增加&#xff0c;因此对于巨大的数据量处理的情况时&#xff0c;必须采取其它的方式去替CPU减负&#xff0c;以保证嵌入式设备性能。例如SD卡存储器和音视频、网络高速通信等其它情…

探讨CSDN等级制度:博客等级、原力等级、创作者等级

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;Vir2021GKBS &#x1f43c;本文由…

数据结构:双向链表

文章目录 1. 双向带头循环链表的结构2. 相关操作2.1 创建节点2.2 尾插2.3 头插2.4 打印2.5 尾删2.6 头删2.7 查找2.8 指定位置前/后插入2.9 删除指定位置的节点2.10 删除指定位置后的节点2.11 销毁链表 3.顺序表与链表区别 1. 双向带头循环链表的结构 与单链表不同的是&#xf…

C#,奥西里斯数(Osiris Number)的算法与源代码

1 奥西里斯数(Osiris Number) 奥西里斯数(Osiris Number)是一个数字&#xff0c; 其值等于通过将其自身数字的所有排列相加而形成的所有数字的值之和。 计算结果&#xff1a; 2 源程序 using System; namespace Legalsoft.Truffer.Algorithm { /// <summary> /…

Django学习记录02

1.请求与响应 1.1get与post的区别 get 一般是从url输入地址&#xff0c;会调用get请求 post 一般是内部数据传输# get请求 def something(request):# req是一个对象&#xff0c;封装了用户发送过来的所有请求相关数据# 1.获取请求方式 http://localhost:8000/something# pri…

Ubuntu22.04 gnome-builder gnome C 应用程序习练笔记(二)

gnome-builder创建的程序&#xff0c;在工程树中有三个重要程序&#xff1a;main主程序、application应用程序和window主窗口程序。main整个程序的起始&#xff0c;它会操作application生产应用环境&#xff0c;application会操作window生成主窗口&#xff0c;于是就有了 appli…

【lesson47】进程通信之system V(共享内存)补充知识

文章目录 补充知识 补充知识 进行通信的key值问题&#xff0c;进程要通信的对方进程怎么能保证对方能看到&#xff0c;并且看到的就是该进程创建的共享内存的。 所以就通过key值来标识共享内存&#xff0c;key值是几不重要&#xff0c;只要在系统里是唯一的即可。 这样server和…

Java图形化界面编程——Container容器 笔记

2.3 Container容器 2.3.1 Container继承体系 Winow是可以独立存在的顶级窗口,默认使用BorderLayout管理其内部组件布局;Panel可以容纳其他组件&#xff0c;但不能独立存在&#xff0c;它必须内嵌其他容器中使用&#xff0c;默认使用FlowLayout管理其内部组件布局&#xff1b;S…

2月8日作业

1、现有文件test.c\test1.c\main.c,编写Makkefile 代码&#xff1a; CCgcc EXEa.out OBJS$(patsubst %.c,%.o,$(wildcard *.c)) CFLAGS-c -oall:$(EXE)$(EXE):$(OBJS)$(CC) $^ -o $%.o:%.c$(CC) $(CFLAGS) $ $^.PHONY:cleanclean:rm $(OBJS) $(EXE)运行结果&#xff1a; 2、…

【网络】:序列化和反序列化

序列化和反序列化 一.json库 二.简单使用json库 前面已经讲过TCP和UDP&#xff0c;也写过代码能够进行双方的通信了&#xff0c;那么有没有可能这种通信是不安全的呢&#xff1f;如果直接通信&#xff0c;可能会被底层捕捉&#xff1b;可能由于网络问题&#xff0c;一方只接收到…

云计算运营模式介绍

目录 一、云计算运营模式概述 1.1 概述 二、云计算服务角色 2.1 角色划分 2.1.1 云服务提供商 2.1.2 云服务消费者 2.1.3 云服务代理商 2.1.4 云计算审计员 2.1.5 云服务承运商 三、云计算责任模型 3.1 云计算服务模式与责任关系图 3.2 云计算服务模式与责任关系解析…

【LeetCode每日一题】525连续数组 303区域和检索(前缀和的基本概念和3个简单案例)

前缀和 // 构造prefix let prefix [0] arr.forEach(num > {prefix.push(prefix.at(-1) num); })如果想要计算某个区间 i 到 j 这个子数组的和时&#xff0c;可以根据 prefix[j1] - prefix[i] 获得。 例题1&#xff1a;303.区域和检索 - 数组不可变 给定一个整数数组 num…

深度神经网络中的BNN和DNN:基于存内计算的原理、实现与能量效率

前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;https://www.captainbed.cn/z ChatGPT体验地址 文章目录 前言引言内存计算体系结构深度神经网络&#xff08;DNN&#xff09;随机梯度的优…

C++进阶(十三)异常

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、C语言传统的处理错误的方式二、C异常概念三、异常的使用1、异常的抛出和捕获2、异常的重新…

【Cocos入门】场景切换(loadScene、preloadScene)

一、loadScene 加载场景 loadScene(sceneName: string, onLaunched: Director.OnSceneLaunched, onUnloaded: Director.OnUnload) : boolean 通过场景名称进行加载场景。返回值为布尔类型 参数&#xff1a; NameTypeDescriptionsceneNamestring场景名称onLaunchedDirector.O…

FPGA_工程_按键控制的基于Rom数码管显示

一 信号 框图&#xff1a; 其中 key_filter seg_595_dynamic均为已有模块&#xff0c;直接例化即可使用&#xff0c;rom_8*256模块&#xff0c;调用rom ip实现。Rom_ctrl模块需要重新编写。 波形图&#xff1a; 二 代码 module key_fliter #(parameter CNT_MAX 24d9_999_99…

基于微信小程序的新生报到系统的研究与实现,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

分布式springboot 3项目集成mybatis官方生成器开发记录

文章目录 说明实现思路实现步骤第一步&#xff1a;创建generator子模块第二步&#xff1a;引入相关maven插件和依赖第三步&#xff1a;编写生成器配置文件第四步&#xff1a;运行查看结果 说明 该文章为作者开发学习记录&#xff0c;方便以后复习和交流主要内容为&#xff1a;…

Zoho Mail企业邮箱商业扩展第3部分:计算财务状况

在Zoho Mail商业扩展系列的压轴篇章中&#xff0c;王雪琳利用Zoho Mail的集成功能成功地完成了各项工作&#xff0c;并顺利地建立了自己的营销代理机构。让我们快速回顾一下她的成功之路。 一、使用Zoho Mail成功方法概述 首先她通过Zoho Mail为其电子邮件地址设置了自定义域…

如何开始深度学习,从实践开始

将“如何开始深度学习”这个问题喂给ChatGPT和文心一言&#xff0c;会给出很有专业水准的答案&#xff0c;比如&#xff1a; 要开始深度学习&#xff0c;你可以遵循以下步骤&#xff1a; 学习Python编程语言的基础知识&#xff0c;因为它在深度学习框架中经常被使用。 熟悉线性…