【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

前言

论文发表时间:2022.08.07

github地址:https://github.com/LabSAINT/SPD-Conv
paper地址:https://arxiv.org/pdf/2208.03641v1.pdf

在这里插入图片描述

文章提出了一个新的CNN构建模块称为SPD-Conv,用来替换每个步长卷转层和每个池化层(从而完全消除它们)。SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成。本文详细介绍了如何在yolov8中引入SPD-Conv,助力助力低分辨率与小目标检测,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

目录

  • 前言
  • 1.SPD-Conv简介
    • 1.1 网络结构
    • 1.2 性能对比
  • 2.YOLOv8添加SPD-Conv
    • YOLOv8网络结构前后对比
    • 定义FasterNet相关类
    • 修改指定文件
  • 3.加载配置文件并训练
  • 4.模型推理
  • 【源码免费获取】
  • 结束语

1.SPD-Conv简介

在这里插入图片描述

摘要:卷积神经网络(CNN)在许多计算机视觉任务中取得了显著的成功,例如图像分类和目标检测。然而,它们的性能在图像分辨率低或对象较小的更艰难任务中会急剧下降。在本文中,我们指出这一问题源于现有CNN架构中一个有缺陷但常见的设计,即使用步长卷积和/或池化层,这导致了细微信息的丢失和较少有效特征表示的学习。为此,我们提出了一个新的CNN构建模块称为SPD-Conv,用来替换每个步长卷转层和每个池化层(从而完全消除它们)。SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,可以应用于大部分(如果不是全部的话)CNN架构。我们在两个最有代表性的计算机视觉任务下解释了这种新设计:目标检测和图像分类。然后,我们通过将SPD-Conv应用于YOLOv5和ResNet创建了新的CNN架构,并通过实验证明,我们的方法显著优于最先进的深度学习模型,尤其是在图像分辨率低和对象较小的更艰难任务上。

论文主要亮点如下:

  • 我们发现了现有CNN架构中一个有缺陷但常见的设计,并提出了一种新的构建模块,称为SPD-Conv,以取代旧的设计。SPD-Conv在不丢失可学习信息的情况下下采样特征图,彻底抛弃了如今广泛使用的带步长的卷积和池化操作。
  • SPD-Conv代表一种通用且统一的方法,可以很容易地应用于大部分(如果不是全部的话)基于深度学习的计算机视觉任务。
  • 使用两个最具代表性的计算机视觉任务,目标检测和图像分类,来评估SPD-Conv的性能。具体来说,我们构建了YOLOv5-SPD、ResNet18-SPD和ResNet50-SPD,并在COCO-2017、Tiny ImageNet和CIFAR-10数据集上与几种最先进的深度学习模型进行了比较。结果显示在AP和top-1精度上都有显著的性能提升,特别是在小物体和低分辨率图像上。

1.1 网络结构

在这里插入图片描述

1.2 性能对比

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.YOLOv8添加SPD-Conv

YOLOv8网络结构前后对比

在这里插入图片描述

定义FasterNet相关类

ultralytics/nn/modules/block.py中添加如下代码块,为space_to_depth模块代码:
在这里插入图片描述

并在ultralytics/nn/modules/block.py中最上方添加如下代码:
在这里插入图片描述

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:
在这里插入图片描述

ultralytics/nn/tasks.py 上方导入相应类名,并在parse_model解析函数中添加如下代码:
在这里插入图片描述

       elif m is space_to_depth:
            c2 = 4 * ch[f]

在这里插入图片描述

ultralytics/cfg/models/v8文件夹下新建yolov8-FasterNet.yaml文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 1]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 1]]  # 1-P2/4
  - [-1, 1, space_to_depth, [1]]  # 2 -P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 1]]  # 4-P3/8
  - [-1, 1, space_to_depth, [1]]
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 1]]  # 7-P4/16
  - [-1, 1, space_to_depth, [1]]
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 1]]  # 10-P5/32
  - [-1, 1, space_to_depth, [1]]
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 13

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 8], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 16

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 5], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 19 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 1]]
  - [-1, 1, space_to_depth, [1]]
  - [[-1, 16], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 23 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 1]]
  - [-1, 1, space_to_depth, [1]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 27 (P5/32-large)

  - [ [ 19, 23, 27 ], 1, Detect, [ nc ] ]  # Detect(P3, P4, P5)


3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-SPD-Conv.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')

# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/376611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python进阶--爬取下载人生格言(基于格言网的Python3爬虫)

目录 一、此处需要安装第三方库: 二、抓包分析及Python代码 1、打开人生格言网(人生格言-人生格言大全_格言网)进行抓包分析 2、请求模块的代码 3、抓包分析人生格言界面 4、获取各种类型的人生格言链接 5、获取下一页的链接 6、获取人生格言的…

最新话费充值系统源码,附带系统安装教程

搭建教程 亲测环境:PHP7.0MySQL5.6 PHP扩展安装:sg11 数据库配置文件路径:/config/database.php 伪静态设置为thinkphp 后台地址:/admin 账号密码:admin/123456

SpringBoot源码解读与原理分析(八)ApplicationContext

文章目录 3.1.2 ApplicationContext3.1.2.1 ApplicationContext根接口3.1.2.2 ConfigurableApplicationContext3.1.2.3 EnvironmentCapable3.1.2.4 MessageSource3.1.2.5 ApplicationEventPublisher3.1.2.6 ResourcePatternResolver3.1.2.7 AbstractApplicationContext3.1.2.8 …

当我们一起走过 2023|Apache Doris 年度时刻盘点

2024 年的第一个月已经彻底过去,2023 年的回顾总结才姗姗来迟。 在过去一年的大多数时间里,我们一直处于忙碌的状态中,紧锣密鼓的代码研发、高速推进的版本迭代、行程紧密的全国之行,众多社区用户与开发者皆是见证。 越是忙碌&a…

Yearning审核平台本地安装配置并结合内网穿透实现远程访问

文章目录 前言1. Linux 部署Yearning2. 本地访问Yearning3. Linux 安装cpolar4. 配置Yearning公网访问地址5. 公网远程访问Yearning管理界面6. 固定Yearning公网地址 前言 Yearning 简单, 高效的MYSQL 审计平台 一款MYSQL SQL语句/查询审计工具,为DBA与开发人员使用…

vector类的模拟实现

实现基本的vector框架 参考的是STL的一些源码&#xff0c;实现的vector也是看起来像是一个简略版的&#xff0c;但是看完能对vector这个类一些接口函数更好的认识。 我们写写成员变量&#xff0c;先来看看STL的成元变量是那些 namespace tjl {template<class T>class …

【C语言|数据结构】数据结构顺序表

目录 一、数据结构 1.1概念 1.2总结 1.3为什么需要数据结构&#xff1f; 二、顺序表 1.顺序表的概念及结构 1.1线性表 2.顺序表分类 2.1顺序表和数组的区别 2.2顺序表的分类 2.2.1静态顺序表 2.2.1.1概念 2.2.1.2缺陷 2.2.2动态顺序表 三、动态顺序表的实现 3.1新…

Pandas文本数据处理技术指南—从查找到时间序列分析【第66篇—python:文本数据处理】

文章目录 Pandas文本数据处理技术指南引言 1. 查找文本数据2. 替换文本数据3. 拼接文本数据4. 正则表达式操作5. 虚拟变量6. 处理缺失值7. 分割文本数据8. 字符串处理方法9. 文本数据的合并与连接10. 文本数据的排序11. 文本数据的统计分析12. 文本数据的分组与聚合13. 文本数据…

使用Softing edgeConnector模块将云轻松连接到Siemens PLC

一 工业边缘的连接解决方案 云服务提供商 (CSP) 引入了服务和功能&#xff0c;以简化基于云的工业物联网解决方案的实施。Azure Industrial IoT Platform或AWS IoT SiteWise支持标准协议和接口&#xff0c;例如OPC UA或MQTT。但是&#xff0c;如果您希望在典型的旧改项目中连接…

【代理模式】

定义&#xff1a;代理模式是一种结构型设计模式&#xff0c;它允许我们创建一个代理对象&#xff0c;用于控制对另一个对象的访问。 代理对象充当了被代理对象&#xff08;目标对象&#xff09;的代表&#xff0c;与被代理对象实现相同的接口&#xff0c;从而实现对被代理对象…

【PowerShell】修改Windows网络配置的常用命令

PowerShell&#xff08;PS&#xff09;是一种强大的任务自动化和管理框架&#xff0c;具有丰富的命令和语法&#xff0c;可以用于编写脚本来管理Windows操作系统和其他应用程序。它的开放式架构和跨平台支持使得它成为一个灵活和可扩展的工具。 在网络配置方面&#xff0c;Powe…

C++ 日期计算器

日期计算器 概要 Date类的规划Date类的实现Date 构造函数Date 拷贝构造函数~Date 析构函数GetMonthDay 求某年某月的天数operator 赋值操作符重载operator 加等操作符重载operator 加号操作符重载operator- 减等操作符重载operator- 减法操作符重载 &#xff08;日期 - 天数&am…

分享66个行业PPT,总有一款适合您

分享66个行业PPT&#xff0c;总有一款适合您 66个行业PPT下载链接&#xff1a;https://pan.baidu.com/s/1kcUOfR_xtH9CAJC12prcTw?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不易。知…

算法学习——华为机考题库3(HJ21 - HJ25)

算法学习——华为机考题库3&#xff08;HJ21 - HJ30&#xff09; HJ21 简单密码 描述 现在有一种密码变换算法。 九键手机键盘上的数字与字母的对应&#xff1a; 1–1&#xff0c; abc–2, def–3, ghi–4, jkl–5, mno–6, pqrs–7, tuv–8 wxyz–9, 0–0&#xff0c;把密码…

Swift Combine 发布者订阅者操作者 从入门到精通二

Combine 系列 Swift Combine 从入门到精通一 1. Combine核心概念 你只需要了解几个核心概念&#xff0c;就能使用好 Combine&#xff0c;但理解它们非常重要。 这些概念中的每一个都通过通用协议反映在框架中&#xff0c;以将概念转化为预期的功能。 这些核心概念是&#x…

Cocos creator 3.x 刚体组件碰撞无效

Cocos creator 3.x 刚体组件碰撞无效 问题描述&#xff1a;只有一个circleCollider2D时&#xff0c;可以在碰撞时正确输出结果&#xff0c;但是当我在外围加了一个circle之后&#xff0c;期望character进入圆圈范围时就触发方法&#xff0c;此时原代码失效 import { _decorat…

简单说网络:TCP+UDP

TCP和UPD: (1)都工作在传输层 (2)目的都是在程序之中传输数据 (3)数据可以是文本、视频或者图片(对TCP和UDP来说都是一堆二进制数没有太大区别) 一、区别:一个基于连接一个基于非连接 将人与人之间的通信比喻为进程和进程之前的通信:基本上有两种方式(1)写信;(2)打电话;这…

【51单片机】实现一个动静态数码管显示项目(前置知识铺垫,代码&图演示)(5)

前言 大家好吖&#xff0c;欢迎来到 YY 滴单片机 系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY…

Redis的数据类型Hash使用场景实战

Redis的数据类型Hash使用场景 常见面试题&#xff1a;redis在你们项目中是怎么用的&#xff0c;除了String数据类型还使用什么数据类型&#xff1f; 怎么保证缓存和数据一致性等问题… Hash模型使用场景 知识回顾&#xff1a; redisTemplate.opsForHash() 方法是 Redis 的 …