挑战杯 python+深度学习+opencv实现植物识别算法系统

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):
​            self.render("index.html")def post(self):
            keras.backend.clear_session()
            img = Image.open(BytesIO(self.request.files['image'][0]['body']))
            img = img
            b_img = Image.new('RGB', (224, 224), (255, 255, 255))
            size = img.size
            if size[0] >= size[1]:
                rate = 224 / size[0]
                new_size = (224, int(size[1] * rate))
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))
    
            else:
                rate = 224 / size[1]
                new_size = (int(size[0] * rate), 224)
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))
    
            if self.get_argument("method", "mymodel") == "VGG16":
                Model = load_model("VGG16.h5")
            else:
                Model = load_model("InceptionV3.h5")
    
            data = orc_img(Model,b_img)
            self.write(json.dumps(
                {"code": 200, "data": data
                 }))
            
            def make_app():
        template_path = "templates/"
        static_path = "./static/"
    
        return tornado.web.Application([
    
            (r"/", MainHandler),
    
        ], template_path=template_path, static_path=static_path, debug=True)


​    
​    def run_server(port=8000):
​        tornado.options.parse_command_line()
​        app = make_app()
​        app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
​        tornado.ioloop.IOLoop.current().start()


4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

   from keras.utils import Sequence
    import math


​    class SequenceData(Sequence):def __init__(self, batch_size, target_size, data):

            # 初始化所需的参数

            self.batch_size = batch_size
            self.target_size = target_size
            self.x_filenames = data
    
        def __len__(self):
            # 让代码知道这个序列的长度
            num_imgs = len(self.x_filenames)
            return math.ceil(num_imgs / self.batch_size)
    
        def __getitem__(self, idx):
            # 迭代器部分
            batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]
            imgs = []
            y = []
            for x in batch_x:
                img = Image.open(x)
                b_img = Image.new('RGB', self.target_size, (255, 255, 255))
                size = img.size
                if size[0] >= size[1]:
                    rate = self.target_size[0] / size[0]
                    new_size = (self.target_size[0], int(size[1] * rate))
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))
    
                else:
                    rate = self.target_size[0] / size[1]
                    new_size = (int(size[0] * rate), self.target_size[0])
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))
    
                img = b_img
                if random.random() < 0.1:
                    img = img.convert("L").convert("RGB")
                if random.random() < 0.2:
                    img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度
                if random.random() < 0.2:
                    img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度
                imgs.append(img.convert("RGB"))
    
            x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(
                float) / 255  # 读取一批图片
    
            batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))
    
            return x_arrays, batch_y


​    

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

    def orc_img(model,image):
​        img =np.array(image)
​        img = np.array([1 - img.astype(float) / 255])
​        predict = model.predict(img)
​        index = predict.argmax()print("CNN预测", index)
​    

        target = target_name[index]
        index2 = np.argsort(predict)[0][-2]
        target2 = target_name[index2]
        index3 = np.argsort(predict)[0][-3]
        target3 = target_name[index3]
    
        return {"target": target,
                "predict": "%.2f" % (float(list(predict)[0][index]) * 64),
    
                "target2": target2,
                "predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),
    
                }


6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/375897.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】缓冲区与缓冲区的刷新策略

目录 1.缓冲区基础 1.1缓冲区的刷新策略 1.1.1三种刷新策略 1.1.2.两种强制刷新策略 2.用户级语言层缓冲区 2.1.默认在显示器输出 2.2.重定向到文件输出 2.3.write调用没有显示两份的原因 3.模拟实现文件缓冲区 3.1 myFileBuffer.h 3.2 myFileBuffer.c 4.系统内核缓…

Linux系统调试课:Linux错误码介绍

文章目录 一、错误码二、错误码返回案例三、使用 goto 语句沉淀、分享、成长,让自己和他人都能有所收获!😄 📢错误代码由内核或用户空间应用程序(通过errno变量)解释。错误处理在软件开发中非常重要,而不仅仅是在内核开发中。幸运的是,内核提供的几种错误,几乎涵盖了可…

一步步建立一个C#项目(连续读取S7-1500PLC数据)

首先创建一个新项目 1、窗体应用 2、配置存储位置 3、选择框架 拖拽一个Button,可以选择视图菜单---工具箱 4、工具箱 拖拽Lable控件和TextBook控件 5、拖拽控件 接下来右键解决方案&#xff0c;点击管理NuGet程序包 6、NuGet程序包 7、安装S7net 8、点击安装 9、安装完成 …

杨幂《哈尔滨1944》现场无剧本,大胆突破令人惊艳。

♥ 为方便您进行讨论和分享&#xff0c;同时也为能带给您不一样的参与感。请您在阅读本文之前&#xff0c;点击一下“关注”&#xff0c;非常感谢您的支持&#xff01; 文 |猴哥聊娱乐 编 辑|徐 婷 校 对|侯欢庭 杨幂在《哈尔滨1944》的拍摄现场&#xff0c;竟然不带剧本&am…

空想--让MYSQL安装双引擎SQL优化器

坑人的innodb_thread_concurrencyMYSQL的优化器是硬解析, 应用每次发往MYSQL的SQL是文本格式,需要编译,虽然时间不多,也就几百毫秒的事情,可架不住SQL的请求并发量啊! 为此数据库走了两条路线, 一条是ORACLE的缓存路线, 另外一条就是MYSQL的快速路线. ORACLE是尽可能的深度…

【电路】500W 12V至220V的逆变器

本电路采用LT1073芯片DC&#xff0d;DC转换器&#xff0c;将1.5V电压升压到5V或12V。该IC有三个不同的版本&#xff0c;这取决于输出电压。两个具有5V和12V的固定输出电压&#xff0c;而最有趣的是&#xff0c;可以进行调整。该调整是通过两个电阻器的分压器&#xff0c;连接到…

有没有那种不烂大街的跨年文案?

​迎接新年的曙光&#xff1a;那些不落俗套的跨年文案 当钟声敲响&#xff0c;旧的一年逝去&#xff0c;新的一年悄然来临&#xff0c;我们总希望用一些特别的话语来表达对过去的怀念和对未来的期待。在这个信息爆炸的时代&#xff0c;许多跨年文案都已经被人们看过无数次&…

数据结构第十天(排序算法总结)

目录 前言 常数时间复杂度&#xff1a;O(1) 线性时间复杂度&#xff1a;O(n) 线性对数时间复杂度&#xff1a;O(n log n) 平方时间复杂度&#xff1a;O(n^2) 对数时间复杂度&#xff1a;O(log n) 前言 排序算法的学习可以告一段落了。但算法的学习永不停止。 今天&…

RBAC权限控制系统-手撸RBAC

手撸RBAC 一、概述 1、什么是RBAC RBAC&#xff08;Role-Based Access Control&#xff09;是一种访问控制机制&#xff0c;它基于角色的概念&#xff0c;将权限授予特定的角色&#xff0c;而不是直接授予个体用户。 这种模型允许管理员根据用户的角色来管理他们的权限&…

elementPlus实现动态表格单元格合并span-method方法总结

最近在做PC端需求的时候&#xff0c;需要把首列中相邻的同名称单元格合并。 我看了一下elementPlus官网中的table表格&#xff0c;span-method可以实现单元格合并。 我们先看一下官网的例子&#xff1a; 合并行或列 多行或多列共用一个数据时&#xff0c;可以合并行或列。 …

9.0 Zookeeper 节点特性

本章节介绍一下 zookeeper 的节点特性和简单使用场景&#xff0c;正是由于这些节点特性的存在使 zookeeper 开发出不同的场景应用。 1、同一级节点 key 名称是唯一的 实例&#xff1a; $ ls / $ create /runoob 2 已存在 /runoob 节点&#xff0c;再次创建会提示已经存在。 …

Mysql大表添加字段失败解决方案

背景 最近遇到一个问题&#xff0c;需要在user用户表千万级别数据中添加两个字段&#xff0c;发现老是加不上去&#xff0c;一直卡死。表数据量不仅大&#xff0c;而且是一个热点表&#xff0c;访问频率特别高&#xff0c;而且该表的访问是在一个大事务中。加字段的时候一直在…

Vue3大事件项目(ing)

文章目录 核心内容1.大事件项目介绍2.大事件项目创建3.Eslint配置代码风格4.配置代码检查工作流问题: pnpm lint是全量检查,耗时问题,历史问题 5.目录调整6.vue-router4 路由代码解析7.引入 Element Plus 组件库8.Pinia 构建仓库 和 持久化9.Pinia 仓库统一管理 核心内容 Vue3…

CX341A 安装驱动与刷固件

参考 驱动安装1 DPDK编译&#xff1a;支持Mellanox 25Gbps网卡 - 知乎 NVIDIA Mellanox CX网卡固件、驱动系列操作 - 知乎 驱动安装2 Mellanox网卡驱动安装指南 Mellanox OFED_崇尚匀速 追求极致的技术博客_51CTO博客 驱动与固件&#xff1a; 家用万兆网络指南 6 - 比…

3、生成式 AI 如何帮助您改进数据可视化图表

生成式 AI 如何帮助您改进数据可视化图表 使用生成式 AI 加速和增强数据可视化。 图像来源:DALLE 3 5 个关键要点: 数据可视化图表的基本结构使用 Python Altair 构建数据可视化图表使用 GitHub Copilot 加快图表生成速度使用 ChatGPT 为您的图表生成相关内容使用 DALL-E 将…

JCTC | 利用几何深度学习对蛋白质-配体结合pose进行等变灵活建模

Overview 该论文解决了药物开发中蛋白质-配体复合结构灵活建模的挑战。作者提出了一种名为FlexPose的新型深度学习框架&#xff0c;它可以直接对复杂结构进行建模&#xff0c;而不需要传统的采样和评分策略。 该模型结合了标量-向量双特征表示和 SE(3)等变网络设计来处理动态结…

[word] word表格内容自动编号 #经验分享#微信#其他

word表格内容自动编号 在表格中的内容怎么样自动编号&#xff1f;我们都知道Word表格和Excel表格有所不同&#xff0c;Excel表格可以轻松自动编号&#xff0c;那么在Word表格中如何自动编号呢&#xff1f; 1、选中内容后&#xff0c;点击段落-自动编号&#xff0c;选择其中一…

基于SSM的实习管理系统(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于SSM的实习管理系统&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring Spri…

【MATLAB】使用梯度提升树在回归预测任务中进行特征选择(深度学习的数据集处理)

1.梯度提升树在神经网络的应用 使用梯度提升树进行特征选择的好处在于可以得到特征的重要性分数&#xff0c;从而识别出对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力&#xff0c;减少过拟合的风险&#xff0c;并且可以加快模型训练和推理速度。此外&…

首个商业化的可用于神经退行性疾病研究的即用型SMN ELISA试剂盒

首个商业化的可用于神经退行性疾病研究的即用型SMN ELISA试剂盒 运动神经元生存蛋白&#xff08;SMN&#xff09;是一种约38kDa的蛋白质&#xff0c;主要由位于5q染色体端粒部分的SMN1基因产生。几乎相同的着丝粒拷贝&#xff08;SMN2&#xff09;也产生少量的全长SMN蛋白&…