挑战杯 python+大数据校园卡数据分析

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于yolov5的深度学习车牌识别系统实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

近年来,大数据的受关注程度越来越高。如何对大数据流进行抽取转换成有用的信息并应用于各行各业变得越来越重要。如今,校园一卡通系统在高校应用十分广泛,大部分高校主要利用校园一卡通对校园中的各类消费阅、补助领取等进行统一管理。通过数据分析算法,对大学生校内消费记录进行整理、分类、预测,从而整体反应学生在校消费情况,形成量化的评判标准,同时也为今后的贫困生资助管理工作提供可靠的数据支持,辅助完成贫困生的相关工作。

2 数据预处理

在进行数据挖掘或者数据分析之前,需要对“脏数据” 数据进行数据预处理,一般采用数据清理、数据集成、数据变换等方式,已获得更好的分析效果。

2.1 数据清洗

由于数据库中有着大量的数据表,我们获取到的数据表中会存在着异常数据,如数据不合法与常识不符,同一个字段属性值来源于多张数据表且数值不一样等。数据预处理主要去处可忽略的字段、忽略空缺记录、可处理噪声的数据、可删除的数据等。由于部分校园卡用户,如教职工、研究生等,消费时具有很强的随机性和离散型。同时,为了保护隐私,对姓名、学号等属性要做脱敏和隐私处理。

2.2 数据规约

预处理后的数据不一定适合直接使用,因此需要对数据进行集成和变换,将多个数据库中提取出的数据项整合到一起,组成新的数据集环境,并经过详细对比和筛选解决数据不一致和数据冗余等问题。为了适合分析,我们要对数据进行离散化和概念分层处理。

3 模型建立和分析

通过建立消费数据分析模型,对学校校园卡消费行为进行分析,总结学校学生

​ #1.总体消费情况
​ #2.不同专业、性别的学生与消费能力的关系
​ #3.不同性别的学生与消费项目的关系
​ #4.消费时间的特征分析
​ #5.消费地点与门禁通过地点的关系分析
​ #6.学生消费特征分层模型

    import matplotlib.pyplot as plt
    expen_rec = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\expen_rec.csv',encoding='gbk')
    student = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\student.csv',encoding='gbk')
    access = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\access.csv',encoding='gbk')
    all_data1 = pd.merge(expen_rec,student,on ='校园卡号',how='left')
    all_data1.head()

在这里插入图片描述

3.1 不同专业、性别的学生与消费能力的关系

    
    from pylab import *
    plt.rcParams['font.sans-serif']=['SimHei']
    %matplotlib inline
    total = con_sum.groupby(['性别'])[['消费金额']].sum()
    total1= con_sum.groupby(['性别'])[['消费金额']].count()
    plt.subplot(121)
    plt.pie(total['消费金额'],labels=total.index,autopct='%2.f%%')
    plt.title('男女生消费总金额对比')
    plt.subplot(122)
    plt.pie(total1['消费金额'],labels=total1.index,autopct='%2.f%%')
    plt.title('男女生人数对比')
    plt.show()

在这里插入图片描述

    fig1 = plt.figure(num =1, figsize=(8,4))
    plt.title('各消费等级人数')
    plt.xlabel('消费等级')
    x1 =['(0, 100] ','(100, 150]','(150, 200] ','(200, 250]','(250, 300]','(300, 350]','(350, 400]','(400, 500]','(500, 3000]']
    y1 = list(table1.values)
    y2 =list(table2.loc[('女',slice(None))].values)
    y3 =list(table2.loc[('男',slice(None))].values)
    plt.plot(x1,y1,label='总体')
    plt.plot(x1,y2,label='女生')
    plt.plot(x1,y3,label='男生')
    plt.legend(loc=2)
    plt.show()

在这里插入图片描述

    #分析各专业总消费金额排列
    fig2 = plt.figure(num =2, figsize=(14,6))
    plt.title('各专业总消费金额排列')
    plt.xlabel('专业名称')
    x1=table3.index
    y1=table3['消费总金额']
    plt.bar(x1,y1)
    plt.xticks(x1,x1,rotation=45)
    for a,b in zip(x1,y1):
        plt.text(a, b+0.05, '%.0f' % b, ha='center', va= 'bottom',fontsize=9)
    plt.show()

在这里插入图片描述

小结:

1.该校18级学生的人均每月校园卡消费295.96元;

2.女生人数占比59%,总消费额占比56%,消费总金额与性别差异不大;

3.从消费金额级区间上看,学生的总体消费金额主要在[200,500]的区间内,但男女生消费存在明显差异:女生消费金额在[200-350]区间内人数明显高于男生,但随着增加而下降,而男生在400以上的区间内的人数高于女生。男生对校园卡消费方式差异较大,一般不使用或者经常使用。女生多数选择轻度使用。

4.从各专业消费总金额上看机械制造专业最高,机械制造(学徒)专业最低。但结合各专业的人均消费分析,各专业的人均消费差异很小,标准差仅为42.8。人均消费最高的机械制造(学徒)专业因为人数最少仅为14人,对总体数据影响较小。可以得出:学生的校园卡消费能力与专业无明显区别。

3.2 消费时间的特征分析

    
    fig7 = plt.figure(num =7, figsize=(8,4))
    mon1= time_tab.groupby(['日期'])[['消费金额']].count()
    mon2= time_tab1.groupby(['日期'])[['消费金额']].count()
    mon3= time_tab2.groupby(['日期'])[['消费金额']].count()
    plt.title('月度消费次数趋势分析')
    plt.xlabel('日期')
    x1 = list(mon1.index)
    y1 = list(mon1.values)
    y2 =list(mon2.values)
    y3 =list(mon3.values)
    plt.plot(x1,y1,label='总体')
    plt.plot(x1,y2,label='女生')
    plt.plot(x1,y3,label='男生')
    plt.legend(loc=2)
    plt.show()
    #除个别天数外,女生均高于男生,每周之间趋势相似

在这里插入图片描述

    fig8 = plt.figure(num =8, figsize=(8,4))
    wk1= time_tab.groupby(['星期'])[['消费金额']].count()
    wk2= time_tab1.groupby(['星期'])[['消费金额']].count()
    wk3= time_tab2.groupby(['星期'])[['消费金额']].count()
    def autolabel(rects):
        for rect in rects:
            height = rect.get_height()
            plt.text(rect.get_x()+rect.get_width()/2.-0.2, 1.03*height, '%s' % float(height))
    plt.title('月度消费次数趋势分析')
    plt.xlabel('星期')
    y1 = wk2['消费金额']
    y2 = wk3['消费金额']
    x1=range(len(y1))
    x2=[i +0.35 for i in x1]
    a=plt.bar(x1,y1, width=0.3,label='女生',color='blue')
    b=plt.bar(x2,y2, width=0.3,label='男生',color='green')
    autolabel(a)
    autolabel(b)
    plt.legend()
    plt.xticks(x1,list(wk1.index),rotation=45)
    plt.show()
    #周一至周三消费次数较高,男女生在一周内的消费频率的波动没有明显差异

在这里插入图片描述

1.从一个月的每天的消费次数上看,除个别天数男女生消费次数相近,多大多数天数的女生的消费次数高于男生,且每周之间趋势相似,可以得出学生日常的消费习惯比较稳定;

2.从每周的消费次数汇总上看,周一至周三消费次数较高,并且逐步下降,周末为消费次数最低的时候。男女生在一周内的消费频率的波动趋势相同,没有明显差异;

3.从每天的消费的时间段分析上看,周末的刷卡消费次数为平常的12%。食堂可以根据数据情况,适当安排休息,减少人力成本浪费;

4.平常时间的早、中、晚餐的用餐时间集中在7点、11点、17-18点时间段。周末消费的时间相对平缓,早餐的高峰时间会延后到8点时间段,且持续有人员消费,中餐的用餐时间也会有部分后延到12点的时间段。晚餐时间则会部分提前17点的时间段进行,需要提前做好食堂的准备事项。

4 Web系统效果展示

以上是校园卡分析的部分过程,我们还可以做成web系统来展示。效果如下:

4.平常时间的早、中、晚餐的用餐时间集中在7点、11点、17-18点时间段。周末消费的时间相对平缓,早餐的高峰时间会延后到8点时间段,且持续有人员消费,中餐的用餐时间也会有部分后延到12点的时间段。晚餐时间则会部分提前17点的时间段进行,需要提前做好食堂的准备事项。

Web系统效果展示

以上是校园卡分析的部分过程,我们还可以做成web系统来展示。效果如下:

在这里插入图片描述

在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/375763.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

#免费 苹果M系芯片Macbook电脑MacOS使用Bash脚本写入(读写)NTFS硬盘教程

Mac电脑苹果芯片读写NTFS硬盘bash脚本 (ntfs.sh脚本内容在本文最后面) ntfs.sh脚本可以将Mac系统(苹果M系芯片)上的NTFS硬盘改成可读写的挂载方式,从而可以直接往NTFS硬盘写入数据。此脚本免费,使用过程中无需下载任何收费软件。…

Linux操作系统运维-Docker的基础知识梳理总结

Linux操作系统运维-Docker的基础知识梳理总结 docker用来解决不同开发人员软件调试时环境不统一的问题,保证了程序调试时运行环境的一致性。docker的设计理念便是一处镜像,处处运行,即通过产生用户软件,运行环境及其运行配置的统一…

复旦微 zynq amp cpu0 唤醒启动cpu1

1 配置多核amp工程,参考上一篇文章 https://blog.csdn.net/yangchenglin927/article/details/136057534 2 在cpu0的main函数中增加唤醒代码 active_cpu1(); /** helloworld.c: simple test application** This application configures UART 16550 to baud rate 96…

momentJs推导日历组件

实现效果: 代码: 引入momentjs然后封装两个函数构建出基本数据结构 import moment from moment;// 某月有多少天 export const getEndDay (m) > m.daysInMonth();/*** description 获取本月空值数据* param { Date } year { } 年度* param { Number } month …

【JS逆向六】(上)逆向模拟生成某网站的【sig】和【payload】的值 仅供学习

逆向日期:2024.02.07 使用工具:Node.js 加密方法:未知 / md5标准库 文章全程已做去敏处理!!! 【需要做的可联系我】 可使用AES进行解密处理( 直接解密即可):在线AES加解…

shell脚本基础语法(.sh ./ sh bash source shell)

Linux 之 Shell 脚本基础语法 0. 学习一门语言的顺序 1. Shell 编程概述 1.1 Shell 名词解释 在 Linux 操作系统中,Shell 是一个命令行解释器,它为用户提供了一个与操作系统内核交互的界面。用户可以通过 Shell 输入命令,然后 Shell 将这些…

【Web - 框架 - Vue】随笔 - 通过`CDN`的方式使用`VUE 2.0`和`Element UI`

通过CDN的方式使用VUE 2.0和Element UI VUE 网址 https://cdn.bootcdn.net/ajax/libs/vue/2.7.16/vue.js源码 https://download.csdn.net/download/HIGK_365/88815507测试 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset&quo…

echarts 一条折线图上显示不同颜色

文档树懒学堂&#xff1a;ECharts visualMap 代码实例及对应注释 - 树懒学堂 封装的echarts 组件代码&#xff1a; <template> <div :style"{ height: 100% }"> <div class"foldLine" ref"foldLine" :style"{ width: width…

【数据结构】链表OJ面试题3(题库+解析)

1.前言 前五题在这http://t.csdnimg.cn/UeggB 后三题在这http://t.csdnimg.cn/gbohQ 记录每天的刷题&#xff0c;继续坚持&#xff01; 2.OJ题目训练 9. 给定一个链表&#xff0c;判断链表中是否有环。 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成…

工业以太网交换机引领现代工厂自动化新潮流

随着科技的飞速发展&#xff0c;现代工厂正迎来一场前所未有的自动化变革&#xff0c;而工业以太网交换机的崭新角色正是这场变革的关键组成部分。本文将深入探讨工业以太网交换机与现代工厂自动化的紧密集成&#xff0c;探讨这一集成如何推动工业生产的智能化、效率提升以及未…

UDP端口探活的那些细节

一 背景 商业客户反馈用categraf的net_response插件配置了udp探测, 遇到报错了&#xff0c;如图 udp是无连接的&#xff0c;无法用建立连接的形式判断端口。 插件最初的设计是需要配置udp的发送字符&#xff0c;并且配置期望返回的字符串&#xff0c; [[instances]] targets…

VSCode无法启动:Waiting for server log...

问题基本情况 [13:30:20.720] > code 1.86.0 (commit 05047486b6df5eb8d44b2ecd70ea3bdf775fd937) [13:30:20.724] > Running ssh connection command... /var/fpwork/reiss/vscdata/server/cplane/.vscode-server/code-05047486b6df5eb8d44b2ecd70ea3bdf775fd937 comman…

【RT-DETR有效改进】轻量级下采样方法ContextGuided(参数量下降700W,轻量又涨点)

&#x1f451;欢迎大家订阅本专栏&#xff0c;一起学习RT-DETR&#x1f451; 一、本文介绍 本文给大家带来的是改进机制是一种替换Conv的模块Context Guided Block (CG block) &#xff0c;其是在CGNet论文中提出的一种模块&#xff0c;其基本原理是模拟人类视觉系统依赖上…

centos 7.6 安装cas 对接ldap 单点登录实战

centos 7.6 安装cas 对ldap 单点登录实战 1、安装前准备工作1.1、centos 7.6 安装JDK 1.81.2、centos 7 安装tomcat 9.0.841.3、windows10 安装JDK 1.81.4、windows10 安装打包工具 maven 3.9.6 2、下载cas 5.3 并打包成war包3、部署cas到tomcat4、cas对接ldap 1、安装前准备工…

SQL注入讲解-BeesCMS系统漏洞分析溯源

判断网页框架 渗透思路 以前的思路 1.首先识别一下指纹 根据指纹查找历史漏洞(同样适用现在) 2.查找目录(目录里面会有很多惊喜) 通过御剑后台扫描工具找到文件夹后在网页打开文件夹进行测试 通过百度搜索查看历史漏洞 查看源代码发现它对账号和密码只有二个加密 我们通过bu…

LeetCode:26.删除有序数组中的重复项

26. 删除有序数组中的重复项 - 力扣&#xff08;LeetCode&#xff09; 目录 题目&#xff1a; 思路&#xff1a; 代码注释&#xff1a; 每日表情包&#xff1a; 题目&#xff1a; 思路&#xff1a; 没啥特殊的&#xff0c;老老实实双指针遍历数组&#xff0c;&#xff0…

谷歌seo搜索引擎优化教程有吗?

教程&#xff0c;教学&#xff0c;指南&#xff0c;这些东西哪里都有&#xff0c;尤其是关于seo相关方面的&#xff0c;这些可以说到处都是&#xff0c;能把谷歌seo这个关键词做上去的&#xff0c;可以说就是实力的证明了&#xff0c;在这里我们说一个无论是老手还是新手都应该…

archlinux 使用 electron-ssr 代理 socks5

提前下载好 pacman 包 https://github.com/shadowsocksrr/electron-ssr/releases/download/v0.2.7/electron-ssr-0.2.7.pacman 首先要有 yay 和 aur 源&#xff0c;这个可以参考我之前的博客 虚拟机内使用 archinstall 安装 arch linux 2024.01.01 安装依赖 yay 安装的&#…

Linux下centos操作系统安装Mysql8.0过程及踩坑填补

我自己有一台服务器&#xff0c;之前安装的是MySQL5.5&#xff0c;现在我想升级为MySQL8.0&#xff0c;于是我干了以下操作,既有踩坑又有干货&#xff1a; 1.先卸载MySQL&#xff1b; 2.删除跟MySQL相关文件&#xff1b; 3.安装新的MySQL8.0版本&#xff08;这里踩了一个坑&…

破除Github API接口的访问次数限制

破除Github API接口的访问次数限制 1、Github介绍2、Github API接口2.1 介绍2.2 使用方法 3、Github API访问限制3.1 访问限制原因3.2 访问限制类别 4、Github API访问限制破除4.1 限制破除原理4.2 限制破除示例 1、Github介绍 Github&#xff0c;是一个面向开源及私有软件项目…