【Flink入门修炼】1-1 为什么要学习 Flink?

流处理和批处理是什么?
什么是 Flink?
为什么要学习 Flink?
Flink 有什么特点,能做什么?
本文将为你解答以上问题。

一、批处理和流处理

早些年,大数据处理还主要为批处理,一般按天或小时定时处理数据,代表性的框架为 MapReduce、Hive、Spark 等。
但是,传统批处理的问题也很快显现:

  • 实时性低,数据一般为 T-1 的数据
  • 数据存储方式,无法按行进行修改,需要按分区重写
  • 必须等数据都到了才能开始计算
  • 计算处理时间一般较长

image.png

为了解决批处理的问题,流处理应运而生。
流处理能将实时产生的数据,实时计算。将延迟降低到秒级或者毫秒级。
流处理引擎也已经经过了几代的发展,需要一个高吞吐、低延迟、高性能的分布式处理框架。
Flink 作为如今的佼佼者,在各大公司大规模使用,下面我们来介绍下 Flink。
image.png

二、Flink是什么

Apache Flink 是一个面向分布式数据流处理和批量数据处理的开源计算平台,提供流处理和批处理两种类型应用功能。
另一方面,Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行。
image.png

image.png

Flink 常见数据处理流程:
image.png

左边是数据源,可以是实时日志、数据库、文件系统等。
中间是Flink,负责对数据进行处理。
右边是输出,Flink可以将计算好的数据输出到其它应用中,或者存储系统中。

三、特点

1、高吞吐、低延迟、高性能。

Flink 是目前开源社区中唯一一套集高吞吐、低延迟、高性能三者于一身的分布式流式处理框架。
像 Spark 使用微批处理方式,使其在流式计算中无法做到低延迟保障;
而 Storm 无法满足高吞吐的要求。
image.png

2、同时支持事件时间和处理时间语义。

处理时间好理解,就是数据到达框架开始计算的时间,此方式也方便实现。
另一个,事件时间是指的数据产生时间。由于数据从产生到传入计算框架,中间会经过多个服务,也会因各种网络问题造成延迟,导致数据并不是按照产生时间的先后顺序到达计算框架的。如何处理乱序数据,是框架需要处理的一个重要问题。
Flink 则能够同时支持 事件时间处理时间 进行窗口计算。

3、支持有状态计算,并提供精确一次的状态一致性保障。

所谓状态,就是之前数据计算得到的结果,这个结果不光是输出的部分,还包括中间算子的计算结果(如 pv、uv 等)。
这样当有下一个数据流入时,不再需要将之前的数据再加上新数据重新计算,直接用原来的结果继续算就行。这种方式极大地提升了系统的性能,并降低了数据计算过程的资源消耗。

4、基于轻量级分布式快照实现的容错机制。

Flink 能够分布式运行在上千个节点上,将一个大型计算任务的流程拆解成小的计算过程,然后将 Task 分布到并行节点上进行处理。
通过基于分布式快照技术的 Checkpoints,将执行过程中的状态信息进行持久化存储,一旦任务出现异常终止,Flink 就能够从 Checkpoints 中进行任务的自动恢复,以确保数据中处理过程中的一致性。

5、保证了高可用,动态扩展。

支持高可用性配置(无单点失效),和 Kubernetes、YARN、Apache Mesos 紧密集成,快速故障恢复,动态扩缩容作业等。基于上述特点,它可以7 X 24小时运行流式应用,几乎无须停机。
当需要动态更新或者快速恢复时,Flink 通过 Savepoints 技术将任务执行的快照保存在存储介质上,当任务重启的时候可以直接从事先保存的 Savepoints 恢复原有的计算状态,使得任务继续按照停机之前的状态运行。

6、支持高度灵活的窗口操作。

Flink将窗口划分为基于 Time、Count、Session,以及 Data-driven 等类型的窗口操作,窗口可以用灵活的触发条件定制化来达到对复杂流传输模式的支持,用户可以定义不同的窗口触发机制来满足不同的需求。

四、应用场景

在实际生产的过程中,大量数据在不断地产生,例如金融交易数据、互联网订单数据、GPS定位数据、传感器信号、移动终端产生的数据、通信信号数据等,以及我们熟悉的网络流量监控、服务器产生的日志数据,这些数据最大的共同点就是实时从不同的数据源中产生,然后再传输到下游的分析系统。

针对这些数据类型主要包括以下场景,Flink 对这些场景都有非常好的支持。暂时不理解如何起作用的没关系,有个大概印象即可。

1、实时智能推荐
利用Flink流计算帮助用户构建更加实时的智能推荐系统,对用户行为指标进行实时计算,对模型进行实时更新,对用户指标进行实时预测,并将预测的信息推送给Web/App端,帮助用户获取想要的商品信息,另一方面也帮助企业提高销售额,创造更大的商业价值。
2、复杂事件处理
例如工业领域的复杂事件处理,这些业务类型的数据量非常大,且对数据的时效性要求较高。我们可以使用Flink提供的CEP(复杂事件处理)进行事件模式的抽取,同时应用Flink的SQL进行事件数据的转换,在流式系统中构建实时规则引擎。
3、实时欺诈检测
在金融领域的业务中,常常出现各种类型的欺诈行为。运用Flink流式计算技术能够在毫秒内就完成对欺诈判断行为指标的计算,然后实时对交易流水进行规则判断或者模型预测,这样一旦检测出交易中存在欺诈嫌疑,则直接对交易进行实时拦截,避免因为处理不及时而导致的经济损失
4、实时数仓与ETL
结合离线数仓,通过利用流计算等诸多优势和SQL灵活的加工能力,对流式数据进行实时清洗、归并、结构化处理,为离线数仓进行补充和优化。另一方面结合实时数据ETL处理能力,利用有状态流式计算技术,可以尽可能降低企业由于在离线数据计算过程中调度逻辑的复杂度,高效快速地处理企业需要的统计结果,帮助企业更好的应用实时数据所分析出来的结果。
5、流数据分析
实时计算各类数据指标,并利用实时结果及时调整在线系统相关策略,在各类投放、无线智能推送领域有大量的应用。流式计算技术将数据分析场景实时化,帮助企业做到实时化分析Web应用或者App应用的各种指标。
6、实时报表分析
实时报表分析说近年来很多公司采用的报表统计方案之一,其中最主要的应用便是实时大屏展示。利用流式计算实时得出的结果直接被推送到前段应用,实时显示出重要的指标变换,最典型的案例就是淘宝的双十一实时战报。

五、小结

本文从批处理和流处理的区别入手,为了处理实时数据,流处理应运而生。在一代代流处理框架的演进过程中,Flink 通过其高吞吐、低延迟、高性能的特点,成为了当前炙手可热的流处理框架。
后面介绍了 Flink 框架的一些基本特点和应用场景,带大家初步了解了 Flink 框架。
后续将带大家深入了解 Flink 框架的内存,敬请期待。


参考文章:
什么是流处理和批处理?
Flink(2):为什么选择Flink - 掘金
Flink01:快速了解Flink:什么是Flink、Flink架构图、Flink三大核心组件、Flink的流处理与批处理、Storm vs SparkStreaming vs Flink-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/374445.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

模型压缩开源项目:阿里-tinyNAS/微软NNI/华为-vega

文章目录 阿里-TinyNAS使用流程步骤一:搜索模型结构步骤二:导出模型结果步骤三:使用搜索的模型结构图像分类任务目标检测任务 华为-vega简介定位优点缺点 微软NNI简介定位优点缺点 阿里-TinyNAS https://github.com/alibaba/lightweight-neur…

【Mybatis】从0学习Mybatis(2)

前言 本篇文章是从0学习Mybatis的第一篇文章,由于篇幅太长CSDN会限流,因此我打算分开两期来写,这是第二期!第一期在这儿:【Mybatis】从0学习Mybatis(1)-CSDN博客 1.什么是ResultMap结果映射&am…

Vue3快速上手(一)使用vite创建项目

一、准备 在此之前,你的电脑,需要安装node.js,我这边v18.19.0 wangdymb 2024code % node -v v18.19.0二、创建 执行npm create vuelatest命令即可使用vite创建vue3项目 有的同学可能卡主不动,可能是npm的registry设置的问题 先看下&#x…

MES生产制造管理:汽车零部件生产MES解决方案

某某汽车部件科技有限公司是一家铝合金零部件研发、压铸和精加工为一体的高新技术企业,拥有先进压铸、机加、检测等设备,并配套自动化生产线。为解决发动机支架等产品的全程生产质量追溯和实现机台设备联网,梅施科技提供了车间级的MES解决方案,如图所示: 梅施科技采…

IF=82.9!高分文献解读|吉西他滨联合顺铂化疗激活肿瘤免疫新机制

鼻咽癌(nasopharyngeal carcinoma, NPC)是一种发生于鼻咽部上皮细胞的恶性肿瘤,且高发于中国。吉西他滨联合顺铂(GP)化疗作为鼻咽癌的一种全球标准治疗方案,然而治疗的具体机制目前尚不清楚。中山大学肿瘤防…

好“云”来!盘点春节与云计算息息相关的那些事儿

在过去的几年里,因为疫情的缘故好多人都选择了就地过年。春节期间,在科技的推动下,“云拜年”“云团圆”“云聚餐”等过年新模式正成为人们过年的选项,各种新模式让相隔千里的亲朋也能感受到浓浓的亲情和喜庆的年味。 那春节里有…

多线程 --- [ 线程概念,线程控制 ]

目录 1. 补充知识 1.1. 什么叫做进程呢? 1.2. 堆区的知识补充 1.3. 虚拟地址到物理地址的转化过程 2. 线程概念 3. 见见代码 3.1. pthread_create 4. Linux进程 && 线程 4.1. 线程如何看待进程内部的资源 4.2. 进程 vs 线程 4.3. 线程的优点 4.…

JVM 性能调优 - 参数基础(2)

查看 JDK 版本 $ java -version java version "1.8.0_151" Java(TM) SE Runtime Environment (build 1.8.0_151-b12) Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode) 查看 Java 帮助文档 $ java -help 用法: java [-options] class [args...] …

vue element 组件 form深层 :prop 验证失效问题解决

此图源自官网 借鉴。 当我们简单单层验证的时候发现是没有问题的,但是有的时候可能会涉及到深层prop,发现在去绑定的时候就不生效了。例如我们在form单里面循环验证,在去循环数据验证。 就如下图的写法了 :prop"pumplist. i .device…

YUM | 起源 | 发展 | 运行逻辑

介绍 YUM(Yellowdog Updater, Modified)起源于 Red Hat Linux 发行版 up2date 工具。 最初,up2date 是由 Red Hat 公司提供的用于管理系统更新的工具。然而,社区逐渐对 up2date 出现一些不满,主要是由于其使用体验和…

【考研408】算法与数据结构笔记

文章目录 绪论数据结构的基本概念算法和算法评价 线性表线性表的定义和基本操作线性表的顺序表示线性表的链式表示 栈和队列栈基本操作栈的顺序存储结构栈的链式存储 队列队列常见的基本操作队列的顺序存储结构队列的链式存储结构双端队列 栈和队列的应用栈在括号匹配中的应用栈…

【C/C++ 17】继承

目录 一、继承的概念 二、基类和派生类对象赋值转换 三、继承的作用域 四、派生类的默认成员函数 五、继承与友元 六、继承与静态成员变量 七、菱形继承与虚拟继承 一、继承的概念 继承是指一个类可以通过继承获得另一个类的属性和方法,扩展自己的功能&…

Mysql-数据库压力测试

安装软件 官方软件 安装插件提供了更多的监听器选项 数据库驱动 数据库测试 配置 这里以一个简单的案例进行,进行连接池为10,20,30的梯度压测: select * from tb_order_item where id 1410932957404114945;新建一个线程组 新增一个连接池配置 新建一…

【Java】MybatisPlus入门

学习目标 能够基于MyBatisPlus完成标准Dao开发 能够掌握MyBatisPlus的条件查询 能够掌握MyBatisPlus的字段映射与表名映射 能够掌握id生成策略控制 能够理解代码生成器的相关配置 一、MyBatisPlus简介 1. 入门案例 问题导入 MyBatisPlus环境搭建的步骤? 1.1 Sp…

在VM虚拟机上搭建MariaDB数据库服务器

例题:搭建MariaDB数据库服务器,并实现主主复制。 1.在二台服务器中分别MariaDB安装。 2.在二台服务器中分别配置my.cnf文件,开启log_bin。 3.在二台服务器中分别创建专用于数据库同步的用户replication_user,并授权SLAVE。&#x…

【ARM 嵌入式 编译系列 2.7 -- GCC 编译优化参数详细介绍】

请阅读【嵌入式开发学习必备专栏 】 文章目录 GCC 编译优化概述常用优化等级-O1 打开的优化选项-O2 打开的优化选项-O3 打开的优化选项-Os 打开的优化选项优化技术使用优化选项的注意事项GCC 编译优化概述 GCC(GNU Compiler Collection)包含了用于C、C++、Objective-C、Fort…

机器学习之DeepSequence软件使用学习1

简介 DeepSequence 是一个生成性的、无监督的生物序列潜变量模型。给定一个多重序列比对作为输入,它可以用来预测可获得的突变,提取监督式学习的定量特征,并生成满足明显约束的新序列文库。它将序列中的高阶依赖性建模为残差子集之间约束的非…

FLUENT Meshing Watertight Geometry工作流入门 - 6 描述几何体

本视频中学到的内容: 讨论“描述几何”任务中所需各种输入的工作细节如何为流体区域创建盖面使用“创建区域”任务创建流体区域 视频链接: FLUENT Meshing入门教程-6描述几何体_哔哩哔哩_bilibili 【Import Mesh】 启动 Ansys Fluent 进入网格模式。转…

从头开始构建和训练 Transformer(下)

导 读 上一篇推文从头开始构建和训练 Transformer(上)https://blog.csdn.net/weixin_46287760/article/details/136048418介绍了构建和训练Transformer的过程和构建每个组件的代码示例。本文将使用数据对该架构进行代码演示,验证其模型性能。…

[office] Excel如何快速统一数字编号长度 #经验分享#其他

Excel如何快速统一数字编号长度 我们在办公室使用Excel统计数据的时候,经常会遇到第一列数据全部是数字编号,但是因为数字的位数不一样,长短不一的样子看起来不是很协调。那么如何快速统一数字编号长度呢?一起来了解一下吧 我们在…