挑战杯 python+opencv+深度学习实现二维码识别

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python+opencv+深度学习实现二维码识别

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 二维码基础概念

2.1 二维码介绍

二维条码/二维码(2-dimensional bar
code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的、黑白相间的、记录数据符号信息的图形;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。

2.2 QRCode

常见的二维码为QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar
Code条形码能存更多的信息,也能表示更多的数据类型。

2.3 QRCode 特点

1、符号规格从版本1(21×21模块)到版本40(177×177 模块),每提高一个版本,每边增加4个模块。

2、数据类型与容量(参照最大规格符号版本40-L级):

  • 数字数据:7,089个字符
  • 字母数据: 4,296个字符
  • 8位字节数据: 2,953个字符
  • 汉字数据:1,817个字符

3、数据表示方法:

  • 深色模块表示二进制"1",浅色模块表示二进制"0"。

4、纠错能力:

  • L级:约可纠错7%的数据码字
  • M级:约可纠错15%的数据码字
  • Q级:约可纠错25%的数据码字
  • H级:约可纠错30%的数据码字

5、结构链接(可选)

  • 可用1-16个QR Code码符号表示一组信息。每一符号表示100个字符的信息。

3 机器视觉二维码识别技术

3.1 二维码的识别流程

在这里插入图片描述

首先, 对采集的彩色图像进行灰度化, 以提高后继的运行速度。

其次, 去除噪声。 采用十字形中值滤波去除噪音对二码图像的干扰主要是盐粒噪声。

利用灰度直方图工具, 使用迭代法选取适当的阈值, 对二维码进行二值化处理,灰度化 去噪 二值化 寻找探测图形确定旋转角度 定位 旋转
获得数据使其变为白底黑色条码。

最后, 确定二维码的位置探测图形, 对条码进行定位, 旋转至水平后, 获得条码数据,
以便下一步进行解码。

3.2 二维码定位

QR 码有三个形状相同的位置探测图形, 在没有旋转的情况下, 这三个位置探测图形分别位于 QR 码符号的左上角、 右上角和左下角。
三个位置探测图形共同组成图像图形。

在这里插入图片描述

每个位置探测图形可以看作是由 3 个重叠的同心的正方形组成, 它们分别为 7 7 个深色模块、 5 5 个浅模块和 3*3 个深色模块。
位置探测图形的模块宽度比为 1: 1:3: 1: 1。

在这里插入图片描述

这种 1: 1: 3: 1: 1 的宽度比例特征在图像的其他位置出现的可能性很小, 故可以将此作为位置探测图形的扫描特征。 基于此特征,
当一条直线上(称为扫描线) 被黑白相间地截为1: 1: 3:1: 1 时, 可以认为该直线穿过了位置探测图形。

另外, 该扫描特征不受图像倾斜的影响。 对比中的两个 QR 码符号可以发现, 无论 QR码符号是否倾斜, 都符合 1: 1: 3:1: 1 的扫描特征。

在这里插入图片描述

3.3 常用的扫描方法

  1. 在 X 方向进行依次扫描。

(1) 固定 Y 坐标的取值, 在 X 方向上画一条水平直线(称为扫描线) 进行扫描。 当扫描线被黑白相间地截为 1: 1: 3: 1: 1 时,
可以认为该直线穿过了位置探测图形。 在实际判定时, 比例系数允许 0. 5 的误差, 即比例系数为1 的, 允许范围为 0. 5~1. 5, 比例系数为 3
的, 允许范围为 2. 5~3. 5。

(2) 当寻找到有直线穿过位置探测图形时, 记录下位置探测图形的外边缘相遇的第一点和最后一点 A 和 B。 由 A、 B
两点为端点的线段称为扫描线段。将扫描线段保存下来。

在这里插入图片描述

用相同的方法, 完成图像中所有水平方向的扫描。

  1. 在 Y 方向, 使用相同的方法, 进行垂直扫描, 同样保存扫描得到的扫描线段。

扫描线段分类扫描步骤获得的扫描线段是没有经过分类的, 也就是对于特定的一条扫描线段, 无法获知其具体对应于三个位置探测图形中的哪一个。
在计算位置探测图形中心坐标之前, 要将所有的扫描线段按照位置进行归类。 一般采用距离邻域法进行扫描线段的分类。

距离邻域法的思想是: 给定一个距离阈值 dT, 当两条扫描线段的中点的距离小于 d T 时, 认为两条扫描线段在同一个邻域内, 将它们分为一类,
反之则归为不同的类别。

距离邻域法的具体步骤如下:
(1) 给定一个距离阈值 dT , d T要求满足以下条件: 位于同一个位置探测图形之中的任意两点之间的距离小于 dT ,
位于不同位置探测图形中的任意两点之间的距离大于 d T
(2) 新建一个类别, 将第 1 条扫描线段归入其中。
(3) 对于第 i 条扫描线段 l i (2≤i≤n), 做以下操作:

a) 求出 l i 的中点 C i 。

b) 分别计算C i与在已存在的每一个类别中的第一条扫描线段的中点的距离d,若 d<d T , 则直接将 l i 加入相应类别中。

c) 若无法找到 l i 可以加入的类别, 则新建一个类别, 将 l i 加入其中。

(4) 将所有类别按照包含扫描线段的数目进行从大到小排序, 保存前 3 个类别(即
包含扫描线段数目最多的 3 个类别), 其余的视为误判得到的扫描线段(在位置探测图形以外的位置得到的符合扫描特征的扫描线段),
直接舍去。距离邻域法结束后得到的分好 3 个类别的扫描线段就分别对应了 3 个位置探测图形。距离邻域法的关键就是距离阈值的选取。 一般对于不同大小的 QR
码图像, 要使用不同的距离阈值。

(1) 在 X 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 A、 B。 由 A、 B两点连一条直线。
在这里插入图片描述

(2) 在 Y 方向的扫描线段中找出最外侧的两条, 分别取中点, 记为 C、 D。 由 C、 D两点连一条直线。
在这里插入图片描述

(3) 计算直线 AB 与直线 CD 的交点 O, 即为位置探测图形中心点。

在这里插入图片描述

将 QR 码符号的左上、 右上位置探测图形的中心分别记为 A、 B。 连接 A、 B。 直线 AB 与水平线的夹角α 即为 QR 码符号的旋转角度。

在这里插入图片描述
对于该旋转角度α , 求出其正弦值 sinα 与余弦值 cosα 即可。 具体计算公式如下:
在这里插入图片描述

在这里插入图片描述

位置探测图形边长的计算是基于无旋转图像的, 在无旋转图像中, 水平扫描线段的长度即为位置探测图形的边长。

水平扫描线段 AB 的长度即为位置探测图形的边长 X。

在这里插入图片描述

对于经过旋转的 QR 码图像, 先通过插值算法生成旋正的 QR 码图像, 然后按照如上所述的方法进

4 深度学习二维码识别

基于 CNN 的二维码检测,网络结构如下

在这里插入图片描述

4.1 部分关键代码

篇幅有限,学长在这只给出部分关键代码

首先,定义一个 AlgoQrCode.h

    #pragma once#include #include 
​    using namespace cv;
​    using namespace std;class AlgoQRCode
    {
    private:
    	Ptr<wechat_qrcode::WeChatQRCode> detector;
    
    public:
    	bool initModel(string modelPath);
    
    	string detectQRCode(string strPath);
    
    	bool compression(string inputFileName, string outputFileName, int quality);
    
    	void release();
    };

该头文件定义了一些方法,包含了加载模型、识别二维码、释放资源等方法,以及一个 detector 对象用于识别二维码。

然后编写对应的源文件 AlgoQrCode.cpp

bool AlgoQRCode::initModel(string modelPath) {
​    	string detect_prototxt = modelPath + "detect.prototxt";
​    	string detect_caffe_model = modelPath + "detect.caffemodel";
​    	string sr_prototxt = modelPath + "sr.prototxt";
​    	string sr_caffe_model = modelPath + "sr.caffemodel";try{
​    		detector = makePtr<wechat_qrcode::WeChatQRCode>(detect_prototxt, detect_caffe_model, sr_prototxt, sr_caffe_model);}
​    	catch (const std::exception& e){
​    		cout << e.what() << endl;return false;}return true;
    }
    
    string AlgoQRCode::detectQRCode(string strPath)
    {
    	if (detector == NULL) {
    		return "-1";
    	}
    
    	vector<Mat> vPoints;
    	vector<cv::String> vStrDecoded;
    	Mat imgInput = imread(strPath, IMREAD_GRAYSCALE);
    //	vStrDecoded = detector->detectAndDecode(imgInput, vPoints);
            ....
    }
    
    bool AlgoQRCode::compression(string inputFileName, string outputFileName, int quality) {
    	Mat srcImage = imread(inputFileName);
    
    	if (srcImage.data != NULL)
    	{
    		vector<int>compression_params;
    		compression_params.push_back(IMWRITE_JPEG_QUALITY);
    		compression_params.push_back(quality);     //图像压缩参数,该参数取值范围为0-100,数值越高,图像质量越高
    
    		bool bRet = imwrite(outputFileName, srcImage, compression_params);
    
    		return bRet;
    	}
    
    	return false;
    }
    
    void AlgoQRCode::release() {
    	detector = NULL;
    }

5 测试结果

学长这里放到树莓派中,调用外部摄像头进行识别,可以看到,效果还是非常不错的

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/373923.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++学习Day04之this指针

目录 一、程序及输出1.1 基础使用1.2 *this和链式编程1.2.1 返回引用进行链式编程1.2.2 返回值进行链式编程1.3 注意事项 二、分析与总结 一、程序及输出 在 C 中使用类的成员函数时&#xff0c;可以使用 this 指针来引用当前对象的地址。this 指针是一个隐式参数&#xff0c;它…

基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 卷积神经网络&#xff08;CNN&#xff09; 4.2 损失函数和优化 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ......................…

代码随想录 Leetcode47. 全排列 II

题目&#xff1a; 代码(首刷自解 2024年2月6日&#xff09;&#xff1a; class Solution { private:vector<vector<int>> res;vector<int> path; public:void backtracing(vector<int>& nums, vector<bool>& used1, vector<bool>…

leetcode 算法 67.二进制求和(python版)

需求 给你两个二进制字符串 a 和 b &#xff0c;以二进制字符串的形式返回它们的和。 示例 1&#xff1a; 输入:a “11”, b “1” 输出&#xff1a;“100” 示例 2&#xff1a; 输入&#xff1a;a “1010”, b “1011” 输出&#xff1a;“10101” 代码 class Solution…

使用 WPF + Chrome 内核实现高稳定性的在线客服系统复合应用程序

对于在线客服与营销系统&#xff0c;客服端指的是后台提供服务的客服或营销人员&#xff0c;他们使用客服程序在后台观察网站的被访情况&#xff0c;开展营销活动或提供客户服务。在本篇文章中&#xff0c;我将详细介绍如何通过 WPF Chrome 内核的方式实现复合客服端应用程序。…

聚观早报 | 小米14 Ultra官宣;苹果汽车项目调整

聚观早报每日整理最值得关注的行业重点事件&#xff0c;帮助大家及时了解最新行业动态&#xff0c;每日读报&#xff0c;就读聚观365资讯简报。 整理丨Cutie 2月6日消息 小米14 Ultra官宣 苹果汽车项目调整 ROG游戏手机8系列推出福利 一加Ace 3原神刻晴定制机官宣 苹果i…

vite+vue3发布自己的npm组件+工具函数

记录一下个人最近一次发布npm组件的过程&#xff1a; 一、创建组件和工具函数 执行命令创建一个空项目&#xff1a; npm create vite 创建过程稍微有些慢&#xff0c;不知何故&#xff1f;其中选择vue , 个人暂时使用的JS 。在 src 目录下面创建一个文件 package 存放组件和公…

计算机网络-差错控制(纠错编码 海明码 纠错方法)

文章目录 纠错编码-海明码海明距离1.确定校验码位数r2.确定校验码和数据的位置3.求出校验码的值4.检错并纠错纠错方法1纠错方法2 小结 纠错编码-海明码 奇偶校验码&#xff1a;只能发现错误不能找到错误位置和纠正错误 海明距离 如果找到码距为1&#xff0c;那肯定为1了&…

K8S之标签的介绍和使用

标签 标签定义标签实操1、对Node节点打标签2、对Pod资源打标签查看资源标签删除资源标签 标签定义 标签就是一对 key/value &#xff0c;被关联到对象上。 标签的使用让我们能够表示出对象的特点&#xff0c;比如使用在Pod上&#xff0c;能一眼看出这个Pod是干什么的。也可以用…

校园墙表白墙系统uniapp微信小程序

配置文件 (自动编号、配置参数名称、配置参数值)&#xff1b; 前端开发:vue 语言&#xff1a;javapythonnodejsphp均支持 运行软件:idea/eclipse/vscode/pycharm/wamp均支持 框架支持:Ssm/django/flask/thinkphp/springboot/springcloud均支持 数据库 mysql 数据库工具&#x…

二维曲线旋转形成三维曲面

开发环境&#xff1a; Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example demo解决问题&#xff1a;创建一个带有盖的球体的可视化图形。程序通过将一个二维曲线沿着y轴旋转&#xff0c;形成三维曲面&#xff0c;从而实现这一目标。 关键…

Linux第42步_移植ST公司uboot的第3步_uboot命令测试,搭建nfs服务器和tftp服务器

测试uboot命令&#xff0c;搭建nfs服务器和tftp服务器&#xff0c;是测试uboot非常关键的一步。跳过这一节&#xff0c;后面可能要踩坑。 一、输入“help回车”&#xff0c;查询uboot所支持的命令 二、输入“? bootz回车”&#xff0c;查询“bootz”怎么用 注意&#xff1a;和…

ELFK日志采 - QuickStart

文章目录 架构选型ELKEFLK ElasticsearchES集群搭建常用命令 Filebeat功能介绍安装步骤Filebeat配置详解filebeat常用命令 Logstash功能介绍安装步骤Input插件Filter插件Grok Filter 插件Mutate Filter 插件常见的插件配置选项&#xff1a;Mutate Filter配置案例&#xff1a; O…

HarmonyOS开发工具DevEco Studio安装以及汉化

HUAWEI DevEco Studio 面向HarmonyOS应用及元服务开发者提供的集成开发环境(IDE)&#xff0c; 助力高效开发。 应用内共享HSP开发 支持在Stage模型和模块化编译方式下开发HSP&#xff0c;以及共享HSP给应用内其他模块使用;支持运行态共享HSP。Code Linter代码检查 支持ArkTS/T…

ArcGIS制图问题——标注和符号压盖

水文站网的站点&#xff08;包括水文站、水位站、雨量站、水质站、地下水站、墒情站等&#xff09;名称基本是以所在的村命名&#xff0c;如果在这个村有多个站点&#xff0c;造成了站点名称压盖的情况&#xff0c;如图&#xff1a; 该问题多个点要素图层标注重复&#xff0c;…

滑动窗口经典问题(算法村第十六关白银挑战)

最长字串专题 无重复字符的最长子串 3. 无重复字符的最长子串 - 力扣&#xff08;LeetCode&#xff09; 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是…

Stable Diffusion 模型下载:RealCartoon3D - V14

文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十下载地址模型介绍 RealCartoon3D 是一个动漫卡通混合现实风格的模型,具有真实卡通的 3D 效果,当前更新到 V14 版本。 RealCartoon3D 是我上传的第一个模型。我仍在学习这些东西,但…

有趣的CSS - 按钮文字上下滑动

目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页面渲染效果 整体效果 这个按钮效果主要使用 :hover 伪选择器以及 transition 过渡属性来实现两个子元素上下过渡的效果。 此效果可以在主入口按钮、详情或者更多等按钮处使用&#xff0c;增加一些鼠…

Protainer

Protainer 介绍 Portainer 是一款轻量级的应用&#xff0c;它提供了图形化界面&#xff0c;用于方便地管理Docker环境&#xff0c;包括单机环境和集群环境。 官网 protainer 安装 docker run -d -p 8000:8000 -p 9000:9000 --name portainer --restartalways -v /var/r…

【Linux】Linux权限(下)

Hello everybody!在上一篇文章中&#xff0c;权限讲了大部分内容。今天继续介绍权限剩下的内容&#xff0c;希望大家看过这篇文章后都能有所收获&#xff01; 1.更改文件的拥有者和所属组 对于普通用户&#xff0c;文件的拥有者和所属组都无权修改。 、 、 但root可以修改文件…