【机器学习】机器学习简单入门

🎈个人主页:甜美的江
🎉欢迎 👍点赞✍评论⭐收藏
🤗收录专栏:matplotlib
🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步!

在这里插入图片描述

【机器学习】机器学习基本概念

    • 一 引入
    • 二 概念
    • 三 算法和模型
      • 3.1 算法(Algorithm)
      • 3.2 模型(Model):
      • 3.3 类比
    • 四 训练,模型,预测的关系
      • 4.1 训练(Training):
      • 4.2 模型(Model):
      • 4.3 预测(Inference 或 Prediction):
      • 4.4 三者关系
      • 4.4 类比
    • 五 总结

引言:

机器学习是一门研究如何使计算机系统能够自动学习和改进的领域。通过机器学习,计算机可以从大量的数据中提取出规律和模式,并利用这些规律和模式来做出预测和决策。在本篇博客中,我们将介绍机器学习的基本概念,包括算法、模型以及训练、模型和预测之间的关系。

一 引入

机器学习,从字面上看来,应该是机器的学习,既然都是学习,那机器学习和人类学习是不是有相似之处呢?所以在讲机器学习的概念之前,让我们来先看一个现实中的人类的学习例子。

假设你是一个刚出生没多久的小孩子,你的目标是学会理解和回答家庭成员的指令,例如,当你听到“请把玩具放到玩具箱里”时,你要能够正确执行这个指令。

最初,你可能对很多词汇和语法规则一无所知。

但是,在这里,父母充当了经验的提供者,每次父母给你一个指令时,他们会提供一个示例,告诉你该如何回应。

随着时间的推移,你开始通过接收大量的指令和相应的回应来学习。

而且,你不需要父母逐一教你每个可能的指令和回应,你会从经验中推断出一般的模式,例如,如果听到“请”,通常后面会有一个请求,而“放到”后面通常是关于把东西放到某个地方的指令。

最终,你具备了理解和执行各种指令的能力。

以上就是一个人类学习的例子。

那么,机器学习,又是什么呢?

接下来让我们来看看机器学习的具体概念。

二 概念

机器学习是人工智能的一个分支,其主要目标是通过让计算机系统从大量数据中学习并逐步改进性能,也就是训练,而无需显式编程规则。

通过构建算法和模型,机器学习使计算机能够识别和利用数据中的模式,从而在面对新的、未知的数据时做出准确的预测或决策。

这种学习过程类比于计算机系统的自我训练,使其具备适应不断变化的环境和任务的能力。

以上就是机器学习的概念,可能没看懂对吧,哈哈哈哈,没事,宝子们,没有关系的,让我们用这个概念和上面的例子来进行类比。

首先,刚出生的小孩子类似于机器学习模型的初始状态,对于任务(例如,理解和回答指令)一无所知。

父母在这里充当了经验的提供者,类似于机器学习中的训练数据。

每次父母给予指令,相当于模型接收到一条训练样本。

示例指令告诉孩子应该如何回应,就如同训练数据告诉模型样本的期望输出。

随着时间的推移,孩子通过接收大量的指令和相应的回应进行学习,这对应于机器学习模型通过大量训练数据进行学习。

孩子不需要父母逐一教导每个可能的指令和回应,就像机器学习模型不需要显式规定每个可能的输入和输出组合。

相反,孩子会从经验中推断出一般的模式,例如,“请”通常表示请求,“放到”后面通常是关于把东西放到某个地方的指令。这类似于模型从数据中学习到的一般性规律和模式。

最终,孩子具备了理解和执行各种指令的能力,这对应于机器学习模型在训练后能够对新的、未见过的数据做出准确预测或执行任务。

这个过程突显了机器学习的核心思想,即通过大量数据的学习,模型能够从经验中提取模式和规律,进而逐渐提高性能。

可以这样认为,机器学习,就相当于我们人类学习的过程,我们人类本身就是一个模型,我们在现实中经历了各种各样的事(训练),那么我们这个人会不断地成熟,不断地汲取经验,最后成为了一个成功的人(也就是训练好的模型)在成为一个成功的人后,我们在今后会面对一些些事情的处理,会更加地成功和合理。(这就是预测)

比如说一个男生啊,不是我啊,刚开始找女朋友,经验不足,一直被拒绝,然后经历过多次的被拒绝后,积累了经验,最终成为了一个情场上的高手,然后成功地找到了女朋友。

三 算法和模型

在上面对于机器学习概念的介绍中,我们提到了两个词——算法,模型。初次接触机器学习的宝子们,可能会对这两个概念有些不清楚,让我们来详细地介绍这两个概念吧。

在机器学习中,算法和模型是两个关键的概念,它们在学习过程中扮演着不同的角色。

3.1 算法(Algorithm)

机器学习算法是一系列定义了学习任务的计算步骤或规则。这些步骤或规则指导计算机系统从输入数据中提取模式、规律或关联性,以实现特定的学习目标。

例如,在监督学习中,常见的算法包括线性回归、决策树、支持向量机等。每个算法都有其独特的数学和统计原理,用于在训练数据上学习模式,并在新数据上进行预测或决策。

3.2 模型(Model):

模型是机器学习算法在经过训练后得到的结果,它是对学习任务的学习和概括。模型捕捉了训练数据中的模式和关系,使其能够对新的、未知的数据进行预测或分类。

在监督学习中,模型可以看作是一个函数,它将输入映射到输出。例如,在线性回归中,模型可能是一个线性方程,描述了输入特征与输出之间的关系。模型的性能取决于其在训练数据上学到的模式的准确性和泛化能力,即在未见过的数据上的表现。

简而言之,算法是机器学习的操作指南,定义了如何从数据中进行学习,而模型是算法在学习过程中得到的实际产物,它能够在面对新数据时做出预测或决策。选择合适的算法以及对其进行训练和调优,是构建有效模型的关键步骤。

3.3 类比

假设你是一位热衷于烘焙的厨师,想要让你的计算机系统学会根据食谱自动调整烤箱温度和时间,以确保每次烘焙都达到最佳效果。

算法(Algorithm):

在这个场景中,烤箱调整的算法就好比你在制定烘焙计划的步骤和规则。这可能包括考虑食谱中的材料、烘焙时间、温度要求等因素,以确定如何调整烤箱参数。

模型(Model):

模型则是在经过多次实验(类似于机器学习中的训练)后,根据不同食谱和烤箱参数学到的经验。这可以看作是你根据之前的烘焙经验总结出的一种模式,使你能够在未来的烘焙中更准确地调整烤箱温度和时间。

训练模型的过程就好比你尝试不同的温度和时间组合,观察结果,并根据反馈调整你的烘焙计划。模型的质量取决于你对食谱和烤箱性能的理解以及对实验结果的学习能力。

最终,通过选择适当的算法和根据经验调整模型,你可以建立一个烤箱调整系统,使其能够根据新的食谱进行自动调整,类似于机器学习系统在训练后能够对新数据做出准确预测。这个过程强调了算法作为操作指南和模型作为学习结果的机器学习核心概念的类比。

四 训练,模型,预测的关系

在机器学习中,训练、预测和模型之间存在密切的关系,它们是机器学习流程中的关键组成部分。

4.1 训练(Training):

训练是指使用已知的输入数据和对应的输出标签(或目标值)来训练机器学习模型。

在训练过程中,模型通过学习输入与输出之间的关系或模式,调整自身的参数以最小化预测错误。

训练的目标是使模型能够准确地泛化到未见过的数据。训练过程产生了一个经过优化的模型,该模型可以用于进行预测。

4.2 模型(Model):

模型是在训练过程中从数据中学到的表示。

它包含了捕捉输入与输出之间关系的参数和结构。

模型经过训练后,可以被用于进行预测。

模型的质量取决于训练过程中的数据质量、算法选择和调整参数的效果。

4.3 预测(Inference 或 Prediction):

预测是指使用已经训练好的模型来对新的、未见过的输入数据进行推断或估计。模型通过应用在训练中学到的知识,将新的输入映射到输出。

这是机器学习模型真正发挥作用的阶段,它使模型能够对未知数据做出有用的预测或决策。

4.4 三者关系

三者的关系可以总结为:训练过程产生了一个经过优化的模型,该模型然后用于预测未见过的数据。

在整个机器学习流程中,训练和预测是紧密相连的步骤,而模型是连接这两个步骤的核心。

成功的训练阶段决定了模型的质量,而模型的质量则影响了在新数据上的预测表现。

4.4 类比

假设你是一位专业的烘焙师傅,你想要训练一个机器学习模型,使其能够自动推断烘焙蛋糕的温度和时间,以确保每次都能获得完美的结果。

训练(Training):

在这个例子中,训练阶段就好比你通过一系列实验,使用已知的食谱和烘焙条件(输入数据和对应的输出标签),调整烤箱的温度和烘焙时间,以最小化蛋糕烤焦或未熟的情况。这个过程中,你不断调整温度和时间,观察结果,最终优化了你的烘焙模型,使其能够在不同的情况下产生最佳的烘焙效果。

模型(Model):

在这个例子中,你的烘焙模型就是你根据经验调整烤箱温度和时间的方式。

这个模型是在训练阶段学到的知识,包括了不同食谱、温度和时间之间的关系。

模型的质量取决于你在训练阶段的调整和优化,以及对不同情况的适应能力。

预测(Inference):

预测阶段相当于你使用已经调教好的烤箱模型,对新的蛋糕食谱进行预测。

当你接收到一个新的蛋糕食谱时,你会根据之前的经验,通过你的烘焙模型来推断出最适合的温度和时间,以确保新的蛋糕能够在烤箱中达到理想的状态。

通过这个类比,你可以看到在烘焙的现实例子中,训练阶段是通过实验学到经验,调整参数以获得最佳结果;而预测阶段则是应用这些经验,根据新的输入进行烘焙,类似于机器学习模型在训练和预测中的角色。模型在这个过程中扮演了关键的角色,它是经验的总结和应用者。

五 总结

本文首先介绍了机器学习的基本概念,包括算法和模型。算法是机器学习中用于从数据中学习规律和模式的方法,而模型则是算法学习到的规律和模式的表示。接着,我们通过类比的方式更加形象地解释了算法和模型的概念。

然后,我们详细讨论了训练、模型和预测之间的关系。训练是指通过使用已知的数据来调整模型的参数,使其能够更好地拟合数据中的规律和模式。模型是经过训练后得到的表示数据规律和模式的结果。预测则是利用已经训练好的模型对新的数据进行推断和预测。

最后,我们通过类比的方式进一步说明了训练、模型和预测之间的关系。类比中,训练可以看作是学习的过程,模型可以看作是学到的知识,而预测则可以看作是应用学到的知识进行推断和预测的过程。

通过本文的介绍,读者可以对机器学习的基本概念有一个初步的了解,并理解训练、模型和预测之间的关系。这将为进一步学习和应用机器学习提供基础和指导。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/373376.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【高质量精品】2024美赛C题高质量成品论文分享获取入口(后续会更新)

一定要点击文末的卡片,进入后,即可获取完整论文!! 首先,我们需要对缺失的 speed_mph 进行插补。缺失值处理是数据预处理的 重要环节之一。可以采用均值、中位数或者根据其他相关特征进行预测的方法来 填补缺失值。在这…

Packet Tracer - Configure IOS Intrusion Prevention System (IPS) Using the CLI

Packet Tracer - 使用CLI配置IOS入侵防御系统(IPS) 地址表 目标 启用IOS入侵防御系统(IPS)。 配置日志记录功能。 修改IPS签名规则。 验证IPS配置。 背景/场景 您的任务是在R1上启用IPS,扫描进入192.168.1.0网络…

Unity3d Cinemachine篇(完)— TargetGroup

文章目录 前言使用TargetGroup追随多个模型1. 创建二个游戏物体2. 创建TargetGroup相机3. 设置相机4. 完成 前言 上一期我们简单的使用了ClearShot相机,这次我们来使用一下TargetGroup 使用TargetGroup追随多个模型 1. 创建二个游戏物体 2. 创建TargetGroup相机 3…

刚刚晋升为管理者,还不会如何管理团队?你要重点关注这9个策略

管理团队需要明确团队目标、提前要求承诺、明确组织架构、团队高效协作、洞察员工、引入敏捷、执行可视化、及时反馈和复盘优化。 这样管理团队可以极大提高团队组织能力。团队组织能力强大的话,团队成员是可以实现自我管理的,会自我驱动去完成目标和执…

2024.2.5 vscode连不上虚拟机,始终waiting for server log

昨天还好好的,吃着火锅,做着毕设,突然就被vscode给劫了。 起初,哥们跟着网上教程有模有样地删除了安装包缓存,还删除了.vscode-server,发现没卵用,之前都是搜那个弹窗报错。 后来发现原来是vsco…

SpringBoot 全局异常处理

介绍 如果代码没有做异常处理,就会报框架错误,而这种格式不符合REST风格,也可以在每一个接口添加 try{ } catch { } 捕获异常,但是会非常的繁琐,这时候可以使用全局异常处理。 统一响应类 Data NoArgsConstructor …

掌握Linux du命令:高效查看文件和目录大小

今天我们在生产环境中的服务器上收到了有关/var磁盘目录使用率较高的警报。为了解决这一问题,我们进行了/var目录下一些大文件的清理和转移操作。在查找那些占用磁盘空间较多的文件时,我们频繁使用了du命令。在Linux系统中,du命令是一款功能强…

5G智能卷烟工厂数字孪生可视化平台,推进烟草行业数字化转型

5G智能卷烟工厂数字孪生可视化平台,推进烟草行业数字化转型。随着5G技术的不断发展,智能卷烟工厂数字孪生可视化平台成为了推进烟草行业数字化转型的重要手段。该平台将5G技术与数字孪生技术相结合,实现了对卷烟生产全过程的实时监控、数据分…

Springboot启动出现Waiting for changelog lock...问题

今天在开发的时候,Springboot启动的时候出现Waiting for changelog lock…问题. 问题原因:该问题就是发生了数据库的死锁问题,可能是由于一个杀死的liquibase进程没有释放它对DATABASECHANGELOGLOCK表的锁定,导致服务启动失败&…

Allegro如何把Symbols,shapes,vias,Clines,Cline segs等多种元素一起移动

Allegro如何把Symbols,shapes,vias,Clines,Cline segs等多种元素一起移动 在用Allegro进行PCB设计时,有时候需要同时移动某个区域的所有元素,如:Symbols,shapes,vias,Clines,Cline segs等元素。那么如何操作呢? 首先就是把Symbols,shapes,vias,Clines,Cline …

Unity笔记:相机移动

基础知识 鼠标输入 在Unity中,开发者在“Edit” > “Project Settings” > “Input Manager”中设置输入,如下图所示: 在设置了Mouse X后,Input.GetAxis("Mouse X")返回的是鼠标在X轴上的增量值。这意味着它会…

arm 汇编积累

C语言函数与汇编对应关系 一、MOV 系列指令 1、指令格式 MOV{条件}{S} 目的寄存器,源操作数 2、含义解析: (1):mov 指令传送数据 案例: MOV R0,R1 ; R0 R1; MOV PC,R14 ;PC R14; MOV R0,R…

大型语言模型(LLM)的优势、劣势和风险

最近关于大型语言模型的奇迹()已经说了很多LLMs。这些荣誉大多是当之无愧的。让 ChatGPT 描述广义相对论,你会得到一个非常好(且准确)的答案。然而,归根结底,ChatGPT 仍然是一个盲目执行其指令集…

N-143基于springboot博客系统

开发工具:IDEA 服务器:Tomcat9.0, jdk1.8 项目构建:maven 数据库:mysql5.7 前端技术:AdminLTEHTML 服务端技术:springbootmybatis-plusthymeleaf 本项目分前台和后台,主要有普…

annaconda如何切换当前python环境

annaconda默认的python环境是base: 把各种项目的依赖都安装到base环境中不是一个好的习惯,比如说我们做爬虫项目和做自动化测试项目等所需要的依赖是不一样的,我们可以将为每个项目创建自己的环境,在各自的环境中安装自己的依赖&…

博途PLC报警字FC(字寄存器按位访问)

博途PLC的字寄存器按位访问和拆分,请查看下面文章链接: https://rxxw-control.blog.csdn.net/article/details/121727057https://rxxw-control.blog.csdn.net/article/details/121727057西门子触摸屏报警都是以字为地址访问,所以离散报警信号我们需要将其组合为报警字输出,…

问题排查利器 - 分布式 trace

在分布式系统开发中,系统间的调用往往会横跨多个应用之间的接口。负责的调用链路也导致了,当线上环境出现问题时,例如请求失败、延迟增加或错误发生,我们无法第一时间确定是哪个环节出了问题,这给故障排查和修复带来了…

Java-冒泡排序

签名:但行好事,莫问前程。 文章目录 前言一、什么是冒泡排序二、手写冒泡排序总结 前言 记录一下经典算法:冒泡排序。 一、什么是冒泡排序 冒泡排序(Bubble Sort)是一种基本的排序算法。其原理是通过相邻元素之间的比…

【多模态MLLMs+图像编辑】MGIE:苹果开源基于大语言模型的图片编辑神器(24.02.03开源)

项目主页:https://mllm-ie.github.io/ 论文2309.Guiding Instruction-based Image Editing via Multimodal Large Language Models 代码:https://github.com/apple/ml-mgie 媒体:机器之心的解析https://mp.weixin.qq.com/s/c87cUuyz4bUgfW2_m…

机器学习系列——(十一)回归

引言 在机器学习领域,回归是一种常见的监督学习任务,它主要用于预测数值型目标变量。回归分析能够通过对输入特征与目标变量之间的关系建模,从而对未知数据做出预测。 概念 回归是机器学习中的一种监督学习方法,用于预测数值型目…