【STM32+HAL库+CubeMX】UART轮询收发、中断收发、DMA收发方法及空闲中断详解

(转载)原文链接:https://blog.csdn.net/qq_39344192/article/details/131470735

1. 什么是UART?

UART是一种异步串行通信接口,常用于通过串口与外部设备进行通信。它通过发送和接收数据帧来实现数据传输,使用起来相对简单。UART通常包含发送器(Transmitter)和接收器(Receiver),通过两根信号线(传输线)进行双向通信。

2. UART协议内容简介

image

UART协议将一长串数据切成很多固定长度的小段,分别发送。每小段数据前后会加上一些附加数据以保证通信的实时性和准确性,最后形成的每个小段叫做一个数据包——即1帧数据。

  • 起始位:发出1位低电平信号,表示开始传输字符。
  • 数据位:真正发送的数据,一般为8位(1个字节),常采用ASCII编码,从最低位开始发送。
  • 校验位:用于检验接收到的数据是否正确,分为奇校验和偶校验。
  • 停止位:一组数据的结束传输的标志。可以是1位、1.5位、2位的高电平。
  • 空闲位:空闲时数据线为高电平状态,代表无数据传输。
  • 波特率:衡量传输速率的指标。UART通信中波特率等于比特率。

UART通信的两个设备间,以上因素必须完全一致才能实现数据通信。

3. UART轮询收发

UART轮询收发时,CPU会不断检测串口的状态位来判断数据收发的情况。

3.1 UART轮询收发的优缺点

UART轮询收发是一种简单直接的UART通信方式,它具有以下优点和缺点:

优点

  • 简单易实现:相比于中断或DMA方式进行数据收发,UART轮询收发的实现相对简单,不需要额外配置中断或DMA控制器,减少了开发的复杂性。
  • 低延迟:由于没有中断处理程序的介入和数据传输的等待时间,UART轮询收发可以实现较低的延迟,对实时性要求较高的应用场景较为适用。占用CPU资源,效能低:UART轮询收发需要通过不断的轮询来检查发送和接收缓冲区的状态,这会占用CPU的资源,导致CPU无法充分利用来执行其他任务。

缺点

  • 占用CPU资源,效能低:UART轮询收发需要通过不断的轮询来检查发送和接收缓冲区的状态,这会占用CPU的资源,导致CPU无法充分利用来执行其他任务。

UART轮询收发适用于简单的、对实时性要求不高的低速通信场景。但在对实时性、效率和灵活性要求较高的应用中,中断或DMA方式可能更加适合。在选择UART通信方式时,需要根据具体应用需求进行权衡和选择。

3.2 UART轮询收发相关的函数

初始化UART参数:首先,需要对UART进行初始化,包括波特率(Baud rate)、数据位数、校验位、停止位等参数的设置。这些参数决定了数据的传输格式。

初始化函数HAL_UART_Init(UART_HandleTypeDef *huart);
功能根据串口句柄指定的参数进行串口初始化。
入口参数huart:串口句柄的地址指针。
返回值HAL状态值。
说明使用CubeMX配置工程时,初始化代码会自动生成,我们不需要再对串口进行初始化。

发送数据:要发送数据,首先将待发送的数据写入UART发送缓冲区,然后调用轮询发送函数。在轮询方式下,单片机会一直检查是否完成发送,直到超过设定时间或数据发送完成。

轮询发送函数HAL_UART_Transmit(UART_Handle TypeDef *huart, uint 8_t *pData, uint 16_t Size, uint 32_t Timeout);
功能在轮询方式下发送一定数量的数据。
入口参数huart:串口句柄的地址。
pData:待发送数据的首地址。
Size:发送的字节数。
Timeout:超时等待时间, 以毫秒为单位。
返回值HAL状态值。

接收数据:要接收数据,需要从UART接收缓冲区读取数据。同样,在轮询方式下,单片机会一直检查是否完成接收,直到超过设定时间或接收到所有数据。

轮询接收函数HAL_UART_Receive(UART_Handle TypeDef *huart, uint 8_t *pData, uint 16_t Size, uint 32_t Timeout);
功能在轮询方式下接收一定数量的数据。
入口参数huart:串口句柄的地址。
pData:存放数据的首地址。
Size:接收数据的字节数。
Timeout:超时等待时间, 以毫秒为单位。
返回值HAL状态值。

3.3 【实践】使用蓝牙模块发送数据

使用UART协议,向手机循环发送“Hello World”语句。

3.3.1 配置UART

image

  1. 左侧connectivity中点击USART1。
  2. 右侧Mode,选择为Asynchronous(异步通信)
  3. 配置参数:
  • Baud Rate(波特率):9600Bits/s
  • Word Length(字长):8 Bits
  • Parity(奇偶校验位):无校验位
  • Stop Bits(停止位):1位

USART包括UART与USRT。我们使用USART的UART模式,即Asynchronous。

3.3.2 连接单片机与蓝牙模块
单片机蓝牙模块
RXTX
TXRX
5VVCC
GNDGND
3.3.3 代码实现

在main.c中添加如下语句:

/* 添加至引用区 */
#include "string.h" // strlen函数依赖该头文件
/* 添加至变量定义区*/
char txBuffer[] = "Hello World"; // 需要发送的数据
/* 写在main()的while(1)循环内 */
while(1)
{
    HAL_UART_Transmit(&huart1, (uint8_t *)txBuffer, strlen(txBuffer), 1000);
    HAL_Delay(1000);
}

4. UART中断收发

4.1 UART中断收发的优缺点

优点

  • 提高系统效率:相比于UART轮询收发方式,UART中断收发可以提高系统的效率。当每完成发送或接收一帧数据时,中断会通知CPU进行相应的处理,而不需要CPU不断地轮询发送或接收缓冲区,释放了CPU资源,使CPU可以同时执行其他任务;
  • 系统响应更快:通过使用中断机制,UART中断收发可以提供更快的系统响应时间。一旦有数据可发送或可接收时,中断立即触发,通知CPU进行相应操作,减少了数据传输的延迟。
  • 灵活性:UART中断收发具有较高的灵活性。中断处理程序可以对数据进行灵活的处理和控制,可以根据实际需求进行相应的操作,如解析数据、执行特定任务等。复杂性增加:相对于UART轮询收发方式,UART中断收发的实现相对复杂一些。需要正确配置中断触发条件和中断优先级,同时编写中断处理程序进行数据的发送和接收操作。

缺点

  • 中断开销:中断处理程序的执行会占用一定的CPU时间和系统资源。频繁的中断触发可能会增加系统的开销。
  • 实时性限制:尽管UART中断收发可以提高系统的响应时间,但它仍然受限于中断处理程序的执行时间和优先级。在高实时性要求的应用中,中断处理程序的执行时间必须保持足够短,以确保数据的及时处理和传输。
  • 占用CPU资源:在传输数据量较大时,如果采用中断方式,每收发一帧的数据,CPU都会被打断,造成CPU无法处理其他事务。因此在批量数据传输,通信波特率较高时,建议采用DMA方式。

UART中断收发相较于UART轮询收发,提高了系统的效率,但是遇到大量、高速的数据传输时仍然会对CPU的性能产生影响。

4.2 UART中断收发时触发中断的流程

image

使能中断后,每收发1帧数据后,UART会触发UART全局中断。此时程序会进入到中断处理函数 USART1_IRQHandler()。在这个函数中,又调用了HAL库的中断处理函数HAL_UART_IRQHandler(&huart1),该函数会通过判断中断类型来决定调用哪个函数。

如果收发完成 -> 进入发送/接收回调函数;
如果产生错误 -> 进入错误回调函数;
如果未收发完 -> 继续发送/接收。

简而言之,每完成一帧数据的收发,都会调用一次中断处理函数,但只有当收发完成时才会调用发送/接收回调函数。在实际操作中,我们一般不需要对中断处理函数HAL_UART_IRQHandler()进行修改。我们将收发完成时的操作逻辑写在回调函数中即可。

4.3 UART中断收发相关的函数

4.3.1 发送相关函数
中断发送函数HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
功能在中断方式下发送一定数量的数据。
入口参数huart:串口句柄的地址。
pData:发送数据的首地址。
Size:发送数据的字节数。
返回值HAL状态值。
发送回调函数HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);
功能本函数会在中断发送完成时被调用。
入口参数huart:串口句柄的地址。
返回值
4.3.2 接收相关函数
中断接收函数HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
功能在中断方式下接收一定数量的数据。
入口参数huart:串口句柄的地址。
pData:存放数据的首地址。
Size:接收数据的字节数。
返回值HAL状态值。
接收回调函数HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
功能本函数会在中断接收完成时被调用。
入口参数huart:串口句柄的地址。
返回值

4.4 回调函数的使用方式

stm32f1xx_hal_uart.c文件中,我们可以找到回调函数的声明方式(下以接收回调函数为例)。

image

关注到函数声明前带有__weak修饰,我们一般将这种函数称之为“弱函数”。含有__weak标识的函数,我们可以自行声明一个同名函数,最终编译器在编译的时候会选择我们自己定义的函数。如果我们没有声明该函数,则会调用有__weak修饰的函数。因此,我们只需要在合适的位置自己声明一个回调函数即可,不必在该文件中进行修改。

4.5 【实践】使用中断方式收发数据

通过蓝牙向单片机发送三个英文字母,单片机将大小写翻转后发回。

4.5.1 配置UART

在上一节配置的基础上,我们打开UART1的全局中断。

image

4.5.2 代码实现

我们在main.c中添加如下代码

/* 添加至宏定义区 */
#define rxDataLen 3 //接收三个字节的数据
/* 添加至变量定义区*/
char rxBuffer[rxDataLen]; // 存储接收到的数据的数组

int main()
{
    /* 添加至while(1)循环前*/
    HAL_UART_Receive_IT(&huart1, (uint8_t *)rxBuffer, rxDataLen); // 中断方式接收三个字节数据
    
    while(1) // 注意不要将中断接收写在while循环内
    {
        HAL_Delay(1);
    }
}

在完成一次接收后,我们需要将接收到的字母大小写翻转并输出。我们需要在接收回调函数中实现这一功能,定义接收回调函数如下。

// 接收回调函数(由于需要覆盖原先的弱函数,本函数名称不能更改)
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) 
{
    if(huart == &huart1) // 如果是串口1
    {
        for(int i = 0; i < rxDataLen; i++)
        {
            if(rxBuffer[i] >= 'a' && rxBuffer[i] <= 'z')
            {
                rxBuffer[i] += 'A' - 'a';
            }
            else if(rxBuffer[i] >= 'A' && rxBuffer[i] <= 'Z')
            {
                rxBuffer[i] -= 'A' - 'a';
            }
        }
        HAL_UART_Transmit_IT(&huart1, (uint8_t *)rxBuffer, rxDataLen);
    }

    // 使用HAL_UART_Receive_IT()时,只会进入一次中断。因此需要在回调函数内再次调用该函数
    HAL_UART_Receive_IT(&huart1, (uint8_t *)rxBuffer, rxDataLen);
}

5. UART使用DMA进行收发 & 空闲中断

5.1 啥是DMA?

DMA(Direct Memory Access,直接内存访问)是一种计算机系统中的数据传输技术,它允许外设直接访问寄存器,而无需通过CPU的干预。DMA技术可以提高数据传输的效率和系统性能,减轻CPU的负担。

简单点来说,DMA收发与轮询、中断都有所不同。在收发数据时,CPU只需告诉DMA数据的来源以及目的地址等信息即可,而无需参与中间的所有传输过程(例如中断收发时每收发一帧数据都会进入中断处理函数,而DMA只在接收完成等少数时刻触发中断,大大降低了CPU的压力)。

5.2 什么是空闲中断?

空闲中断(Idle Interrupt)是UART通信中的一种中断类型。当UART处于空闲状态(没有接收到数据)且持续时间超过一个帧的传输时间时,空闲中断会触发,调用上节提到的函数USART1_IRQHandler。空闲中断可以用于检测数据帧的结束或接收数据的完成。

5.3 相关函数

使能UART的特定中断(宏)__HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__);
参数__HANDLE__:指向UART句柄的指针;
__INTERRUPT__:要使能的中断标志位。
说明本节会使用到空闲中断,即UART_IT_IDLE
DMA发送函数HAL_UART_Transmit_DMA(UART_Handle TypeDef *huart, uint 8_t *pData, uint 16_t Size);
入口参数huart:串口句柄的地址。
pData:发送数据的首地址。
Size:发送数据的字节数。
DMA接收函数HAL_UART_Receive_DMA(UART_Handle TypeDef *huart, uint 8_t *pData, uint 16_t Size);
入口参数huart:串口句柄的地址。
pData:存放数据的首地址。
Size:接收数据的字节数。
禁用DMA传输(宏)__HAL_DMA_DISABLE(_HANDLE_);
参数__HANDLE__:指向UART句柄的指针
使能DMA传输(宏)__HAL_DMA_ENABLE(_HANDLE_);
参数__HANDLE__:指向UART句柄的指针
设置DMA传输计数器值(宏)__HAL_DMA_SET_COUNTER(__HANDLE__, __COUNTER__);
参数__HANDLE__:指向UART句柄的指针
__COUNTER__:要设置的计数器值。
获取DMA传输的计数器值(宏)__HAL_DMA_GET_COUNTER(__HANDLE__);
参数__HANDLE__:指向UART句柄的指针
宏定义#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNDTR)
说明这个宏需要我们自行定义。
我们可以利用这个宏定义来获取接收到的数据的长度。
接收到的数据长度 = 设置的长度 - 当前DMA计数器的值,即
rxLen = rxBufferLen - __HAL_DMA_GET_COUNTER(__HANDLE__);

5.4 【实践】使用DMA & 空闲中断实现不定长数据的接收

结合DMA以及空闲中断,实现接收不定长度的一段数据,发送这一数据的长度。

5.4.1 配置UART

参考前两节,配置好UART以及全局中断。我们还需要开启UART的DMA接收。

5.4.2 代码实现

在本节中,我们将代码按用途划分为不同函数,逐一实现。先定义如下全局变量以及宏变量。

#define rxBufferLen 40 // 接收数据的最大长度
#define __HAL_DMA_SET_COUNTER(__HANDLE__, __COUNTER__) ((__HANDLE__)->Instance->CNDTR = (uint16_t)(__COUNTER__))
char rxBuffer[rxBufferLen]; // 用于存放接收到的数据

程序运行之初,我们需要先对DMA接收进行初始化,该初始化函数应当在main()函数内调用一次。

void UART_InitDMAReceive() // 初始化函数
{
    __HAL_UART_CLEAR_IDLEFLAG(&huart1); // 清除空闲中断标志位
    __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE); // 开启UART的空闲中断
    HAL_UART_Receive_DMA(&huart1, (uint8_t*)rxBuffer, rxBufferLen ); // 启动DMA接收
}

每当发生空闲中断或接收到的数据超过缓存区大小时,会产生一次中断。我们首先需要自行编写中断回调函数。

void UART_DMAIdleCallback(UART_HandleTypeDef *huart)
{
    if(huart == &huart1)
    {
        // 停止DMA接收
        __HAL_DMA_DISABLE(huart->hdmarx);
        // 计算接收到的数据长度
        uint8_t dataLen = rxBufferLen - __HAL_DMA_GET_COUNTER(huart->hdmarx) + '0'; 
        // 发送数据长度,使用轮询方法
        HAL_UART_Transmit(&huart1, &dataLen, 1, 10);

        // 重启DMA接收
        __HAL_DMA_SET_COUNTER(huart->hdmarx, rxBufferLen); // 重设DMA计数器
        __HAL_DMA_ENABLE(huart->hdmarx); // 使能DMA接收
    }
}

我们在中断处理函数内添加如下内容(该函数位于文件stm32g4xx_it.c内)。

void USART1_IRQHandler(void)
{
    /* USER CODE BEGIN USART1_IRQn 0 */

    /* USER CODE END USART1_IRQn 0 */
    HAL_UART_IRQHandler(&huart1);
    /* USER CODE BEGIN USART1_IRQn 1 */
    if(__HAL_UART_GET_FLAG(&huart1, UART_FLAG_IDLE) != RESET) // 判断中断是否为空闲中断
    {
        __HAL_UART_CLEAR_IDLEFLAG(&huart1); // 清除空闲中断标志位
        UART_DMAIdleCallback(&huart1); // 空闲回调函数
    }
    /* USER CODE END USART1_IRQn 1 */
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/372177.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

保护个人信息安全,避免成为“互联网中的裸泳者”

⚽️ 一、互联网中的裸泳者&#x1f3c0; 二、代理 IP 的应用 - 解锁无限可能⚾️ 三、代理 ip 的几种类型 3.1 动态住宅代理&#xff08;Rotating Residential Proxy&#xff09;3.2 静态住宅代理&#xff08;Static Residential Proxy&#xff09;3.3 动态长效ISP&#xff08…

Nucleosome, Recombinant Human, H2BK120ub1 dNuc, Biotinylated

EpiCypher&#xff08;国内授权代理商欣博盛生物&#xff09;是一家为表观遗传学和染色质生物学研究提供高质量试剂和工具的专业制造商。EpiCypher生产的在E. coli中表达的重组人单核小体(组蛋白H2A、H2B、H3和H4各2个;accession numbers:H2A-P04908;H2B-O60814;H3.1-P68431;H4…

Python实现排序算法

目录 一&#xff1a;快速排序 二&#xff1a;合并排序 三&#xff1a;冒泡排序 四&#xff1a;插入排序 五&#xff1a;选择排序 一&#xff1a;快速排序 def quicksort(arr): if len(arr) < 1: return arr pivot arr[len(arr) // 2] le…

【Docker】入门到精通(常用命令解读)

一、准备工作 1.配置Docker的yum库 首先要安装一个yum工具 yum install -y yum-utils安装成功后&#xff0c;执行命令&#xff0c;配置Docker的yum源&#xff1a; yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo2.安装Docker 执…

python创建pdf文件

目录 一&#xff1a;使用reportlab库 二&#xff1a;使用使pdf库 在Python中生成PDF文件可以使用多种库&#xff0c;其中最常用的是reportlab和fpdf。以下是使用这两个库生成PDF文件的示例代码&#xff1a; 一&#xff1a;使用reportlab库 1&#xff1a;写入文字信息 from r…

keil边框的背景色更改

网上有很多keil换背景色的帖子&#xff0c;效果如图&#xff1a; 可以看到&#xff0c;虽然代码区背景色设置为了黑色&#xff0c;但是上方、左侧边、下方的颜色并没有改变&#xff0c;看起来还是很不舒服。 机缘巧合&#xff0c;我想把Windows系统颜色设置为护眼的颜色&#x…

[Python图像处理] 使用OpenCV创建色调图

使用OpenCV创建色调图 色调映射和高动态范围成像应用色调映射相关链接 色调映射和高动态范围成像 高动态范围 (High Dynamic Range, HDR) 技术用于摄影成像&#xff0c;以再现比标准数字成像或摄影技术更大的动态范围的亮度。标准成像技术仅允许在一定范围内区分亮度&#xff…

yolov8使用旋转框自己做数据集检测

主要在数据集制作&#xff0c;训练的步骤和目标检测是一样的 1.数据集标注主要使用rolabelimg工具&#xff0c;这个工具不能在线安装 得下载源代码 然后运行 标注好数据保存会是一个xml文件 2.把xml文件转换成dota的xml文件&#xff0c;然后把dota的xml文件转换成dota的txt文件…

Java List的合并与切分

在Java开发中经常遇到list结构数据的处理&#xff0c;如List的合并或拆分&#xff0c;记录下来&#xff0c;方便备查。 一、List 合并 两个list数据的合并处理&#xff0c;可使用Java8 新特性的stream流&#xff0c;根据实际需要遍历取值。 1、定义 UserInfo 对象 订单bean…

【知识图谱--第一讲概论】

深度学习–连接主义 知识图谱–符号主义 表示 有属性图和RDF图两种 RDF由三元组表示&#xff1a;Subject - Predicate - Object 存储 图数据库 抽取 融合 推理 问答 图算法

基于SpringBoot+Vue的师生疫情健康信息管理登记平台,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

Acwing---830. 单调栈

单调栈 1.题目2.基本思想3.代码实现 1.题目 给定一个长度为 N N N 的整数数列&#xff0c;输出每个数左边第一个比它小的数&#xff0c;如果不存在则输出 − 1 −1 −1。 输入格式 第一行包含整数 N N N&#xff0c;表示数列长度。 第二行包含 N N N 个整数&#xff0c…

vue2+html2pdf下载PDF,PDF分页切割

问题&#xff1a; PDF下载下来后&#xff0c;文档内容被暴力分割。 解决方案&#xff1a; HTML <!-- 打印按钮 --> <el-button type"primary" size"small" class"el-icon-download right_btn" click"downloadPDF">PDF&…

最短编辑距离问题与动态规划----LeetCode 72.编辑距离

动态规划&#xff08;Dynamic Programming, DP&#xff09;是解决复杂问题的一个强大工具&#xff0c;它将问题分解成更小的子问题&#xff0c;并使用这些子问题的解决方案来构建整体问题的解决方案。在深入探讨最短编辑距离问题之前&#xff0c;让我们先理解什么是动态规划&am…

CGAL的二维分段的Delaunay图

本章描述了CGAL的二维分段Delaunay图。我们从定义一节中的一些定义开始。2D段Delaunay图形包的软件设计在“软件设计”一节中进行了描述。在“几何特征”一节中&#xff0c;我们讨论了2D段Delaunay图包的几何特征&#xff0c;在“段Delaunay图层次结构”一节&#xff0c;简要描…

【Shell的运行原理以及Linux当中的权限问题】

Shell的运行原理以及Linux当中的权限问题 Shell的运行原理Linux当中的权限问题Linux权限的概念如何实现用户账号之间的切换如何仅提升当前指令的权限如何将普通用户添加到信任列表 Linux权限管理文件访问者的分类 (人)文件类型和访问权限 (事物属性)文件权限值的表示方法文件访…

MacOS系统电脑远程桌面控制windows系统电脑【内网穿透】

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 1. 测试本地局域网内远程控制1.1 Windows打开远程桌面1…

自动化测试的ROI

ROI模型树 提升ROI的基础出发点&#xff1a;增加运行次数 手段&#xff1a;测试左移、测试右移 测试左移&#xff08;测试阶段&#xff09; 原始测试流程&#xff1a; 软件生命周期&#xff1a;软件需求分析、软件设计、软件开发、单元测试、集成测试、系统测试开发阶段&…

ideaIU-2023.2.1安装教程

ideaIU-2023.2.1安装教程 一、ideaIU-2023.2.1安装1.1 下载IdeaIU-2023.2.1安装包1.2 安装ideaIU-2023.2.1 二、ideaIU-2023.2.1激活 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 一、ideaIU-2023.2.1安装 1.1 下载IdeaIU-2023.2.1安装包…

import blind_watermark ModuleNotFoundError: No module named ‘blind_watermark‘

Traceback (most recent call last): File "d:\python\PYTHON_VSCOD\demo.py", line 1, in <module> import blind_watermark ModuleNotFoundError: No module named blind_watermark 如何选择正确的解释器 在 Visual Studio Code (VS Code) 中更改 Python 解释…