Python基础知识:Python流程控制语句

流程控制就是控制程序如何执行的方法,适用于任何一门编程语言,其作用在于,可以根据用户的需求决定程序执行的顺序。计算机在运行程序时,有3种执行方法,第一种是顺序执行,自上而下顺序执行所有的语句,对应程序设计中的顺序结构;第二种是选择执行,程序中含有条件语句,根据条件语句的结果选择执行部分语句,对应程序设计中的选择结构;第三种是循环执行,在一定条件下反复执行某段程序,对应程序设计中的循环结构,其中被反复执行的语句为“循环体”,决定循环是否中止的判断条件为“循环条件”。

选择语句对应前面讲到的选择执行,选择语句包括三种:if语句;if……else语句;if……elif……else语句。

循环语句对应前面讲到的循环执行,循环语句包括两种:while语句;for语句。两种循环语句之间也可以相互嵌套。

跳转语句依托于循环语句,适用于从循环语句中提前离开,比如在while循环达到结束条件之前,或者for循环完全完成之前。跳转语句包括两种:break语句;continue语句。

在Python中,流程控制语句的代码之间需要区分层次,采取的方式是使用代码缩进和冒号(:)。行尾的冒号和下一行的缩进表示一个代码块的开始,而缩进结束则代码块也就结束。同一层次代码块的缩进量必须相同,一般情况下以4个空格作为一个缩进量,如果同一层次代码块的缩进量不同或输入的空格数不同,系统就会提示错误。

很多朋友反映学Python、学机器学习比较难、效果不好,我的观点是:需要拿到Python、机器学习的源代码边学习边操作,从解决问题、上手操作中获得成就感,才会越学越深入,学习效果才会好。

针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)《Python数据科学应用从入门到精通》(张甜 杨维忠 著 2023年11月新书 清华大学出版社)。这两本书的特色是在数据分析、机器学习各种算法的介绍方面通俗易懂,较少涉及数学推导,对数学基础要求相对不高,在python代码方面讲的很细致,看了以后根据自身需要选取算法、优化代码、科学调参。

《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)内容非常详实,包含了Python和机器学习,相当于一次获得了两本书。在讲解各类机器学习算法时,逐一详解用到的各种Python代码,针对每行代码均有恰当注释(这一点基本上是大多数书目做不到的)。《Python机器学习原理与算法实现》一书创作完成后,在正式出版之前,已经开发成一套系统课程,分9次授课,在某银行内部开展了培训,490人根据行内组织统一学习,授课完成后放在知鸟平台供回放学习,9次课程累计回放量近3万次,得到参训学员的一致好评,广泛应用于各位学员的工作实践。(所以,这是一本避雷避坑、已经被亲测可行的网红书,只要用心学,都没问题哦)

《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)

《Python数据科学应用从入门到精通》一书,旨在教会读者实现全流程的数据分析,并且相对《Python机器学习原理与算法实现》一书增加了很多概念性、科普性的内容,进一步降低了学习难度。国务院发展研究中心创新发展研究部第二研究室主任杨超 ,山东大学经济学院金融系党支部书记、副主任、副教授、硕士生导师张博,山东管理学院信息工程学院院长 袁锋 教授、硕士生导师,山东大学经济学院 刘一鸣 副研究员、硕士生导师,得厚投资合伙人 张伟民等一众大牛联袂推荐。全书内容共分13章。其中第1章为数据科学应用概述,第2章讲解Python的入门基础知识,第3章讲解数据清洗。第4~6章介绍特征工程,包括特征选择、特征处理、特征提取。第7章介绍数据可视化。第8~13章介绍6种数据挖掘与建模方法,分别为线性回归、Logistic回归、决策树、随机森林、神经网络、RFM分析。从数据科学应用和Python的入门,再到数据清洗与特征工程,最终完成数据挖掘与建模或数据可视化,从而可以为读者提供“从拿到数据开始,一直到构建形成最终模型或可视化报告成果”的一站式、全流程指导。买这一本书相当于一下子得到了5本书(Python基础、数据清洗、特征工程、数据可视化、数据挖掘与建模),入门超级简单,不需要编程基础,也不需要过多数学推导,非常适用于零基础学生。

两本书随书赠送的学习资料也很多,包括全部的源代码、PPT、思维导图,还有10小时以上的讲解视频,每一章后面还有练习题及参考答案,还有学习群,相对于只看网络上的视频,一方面更加系统、高效,另一方面照着书一步步操作学起来也事半功倍。全网热销中,当当、京东等平台搜索“Python机器学习 杨维忠”“Python数据科学 杨维忠”即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/371216.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python爬虫代码示例:爬取京东详情页图片【京东API接口】

一、Requests请求示例【京东API接口】 爬虫爬取网页内容首先要获取网页的内容,通过requests库进行获取。 安装 pip install requests 示例代码 import requests url "http://store.weigou365.cn"res requests.get(url)res.text 执行效果如下&#x…

我在项目中使用Redis的几个场景

目录 缓存 会话存储 分布式锁 消息队列 位统计 计数器 排行榜 缓存 缓存的目的是为了提高系统响应速度、减少数据库等资源的压力,redis作为键值对形式的内存数 据库,可以提供非常快速的读取速度,使得它成为存储热点数据或频繁访问数…

MiniCPM:揭示端侧大语言模型的无限潜力

技术博客链接: 🔗https://shengdinghu.notion.site/MiniCPM ➤ Github地址: 🔗https://github.com/OpenBMB/MiniCPM ➤ Hugging Face地址: 🔗https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16 1 …

3D Line Mapping Revisited论文阅读

1. 代码地址 GitHub - cvg/limap: A toolbox for mapping and localization with line features. 2. 项目主页 3D Line Mapping Revisited 3. 摘要 提出了一种基于线的重建算法,Limap,可以从多视图图像中构建3D线地图,通过线三角化、精心…

随机森林超参数的网格优化(机器学习的精华--调参)

随机森林超参数的网格优化(机器学习的精华–调参) 随机森林各个参数对算法的影响 影响力参数⭐⭐⭐⭐⭐几乎总是具有巨大影响力n_estimators(整体学习能力)max_depth(粗剪枝)max_features(随机…

ACM训练题:Fadi and LCM

首先LCM(a,b)X,说明a*b>X,当且仅当a,b互质时相等,题意要让a,b都尽可能小,最好让a*bX,即a,b互质。原因如下: 最小公倍数由a、b中最…

电脑上常见的绘图软件有哪些?

现在在电脑上绘图很流行,不仅可以随时更改,还可以提高绘图效率,绘图软件中有很多工具。市场上的计算机绘图软件种类繁多。包括艺术设计、工业绘图和3D绘图。那么每个绘图软件都有自己的特点。那么,哪个更适合计算机绘画软件呢&…

Redis核心技术与实战【学习笔记】 - 22.浅谈Redis的ACID相关知识

概述 事务是数据库的一个重要功能。所谓的事务,就是指对数据进行读写的一系列操作。事务在执行时,会提供专门的属性保证,包括原子性(Atomicity)、一致性(Consistency)、隔离性(Isol…

Android电动汽车充电服务vue+uniAPP微信小程序

本系统利用SSM和Uniapp技术进行开发电动汽车充电服务系统是未来的趋势。该系统使用的编程语言是Java,数据库采用的是MySQL数据库,基本完成了系统设定的目标,建立起了一个较为完整的系统。建立的电动汽车充电服务系统用户使用浏览器就可以对其…

centos 7.7 离线安装docker

centos 7.7 离线安装docker Index of linux/static/stable/x86_64/https://download.docker.com/linux/static/stable/x86_64/ 【1】离线下载docker 压缩包上传至 /usr/local 目录,解压缩,并复制到 /usr/bin/ 目录中。 cd /usr/local/tar -zxvf docke…

一篇文章了解区分指针数组,数组指针,函数指针,链表。

最近在学习指针,发现指针有这许多的知识,其中的奥妙还很多,需要学习的也很多,今天那我就将标题中的有关指针知识,即指针数组,数组指针,函数指针,给捋清楚这些知识点,区分…

两次NAT

两次NAT即Twice NAT,指源IP和目的IP同时转换,该技术应用于内部网络主机地址与外部网络上主机地址重叠的情况。 如图所示,两次NAT转换的过程如下: 内网Host A要访问地址重叠的外部网络Host B,Host A向位于外部网络的DNS服务器发送…

瑞_23种设计模式_建造者模式

文章目录 1 建造者模式(Builder Pattern)1.1 介绍1.2 概述1.3 创作者模式的结构 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 模式拓展 ★★★4.1 重构前4.2 重构后 5 总结5.1 建造者模式优缺点5.2 建造者模式使用场景5.3 建造者模式 …

使用SPM_batch进行批量跑脚本(matlab.m)

软件:spm8matlab2023bwin11 数据格式: F:\ASL\HC\CBF\HC_caishaoqing\CBF.nii F:\ASL\HC\CBF\HC_caishaoqing\T1.nii F:\ASL\HC\CBF\HC_wangdonga\CBF.nii F:\ASL\HC\CBF\HC_wangdonga\T1.nii clear spmdirD:\AnalysisApps\spm8; datadirF:\ASL\HC\CBF…

Haas 开发板连接阿里云上传温湿度和电池电压

目录 一、在阿里云上创建一个产品 二、开发环境的介绍 三、创建wifi示例 四、编写SI7006和ADC驱动 五、wifi配网 六、主要源码 七、查看实现结果 一、在阿里云上创建一个产品 登录自己的阿里云账号, 应该支付宝,淘宝账号都是可以的。 接着根据需求…

Spring IOC 之深入分析 Aware 接口

🎬作者简介:大家好,我是小徐🥇☁️博客首页:CSDN主页小徐的博客🌄每日一句:好学而不勤非真好学者 📜 欢迎大家关注! ❤️ AbstractAutowireCapableBeanFacto…

小程序中封装下拉选择框

小程序中没有现成的下拉选择组件&#xff0c;有个picker组件&#xff0c;但是是底部弹出的&#xff0c;不满足我的需求&#xff0c;所以重新封装了一个。 封装的下拉组件 html部分&#xff1a; <view class"select_all_view"><!-- 内容说明&#xff0c;可…

设计一个可以智能训练神经网络的流程

设计一个可以智能训练神经网络的流程,需要考虑以下几个关键步骤: 初始化参数:设定初始的batch size和learning rate,以及其他的神经网络参数。训练循环:开始训练过程,每次迭代更新网络的权重。监控loss:在每个训练周期(epoch)后,监控loss的变化情况。动态调整:根据l…

python 多线程编程(一)

文章目录 threading - 基于线程的并行线程对象thread 类thread方法thread 属性例子 锁对象递归锁对象 条件对象 队列Queue对象SimpleQueque 对象例子 最近的工作需要用到多线程提升程序的运行效率&#xff0c;以前一直没有机会进行多线程编程&#xff0c;所以一直没有机会学习p…

Intellij IDEA各种调试+开发中常见bug

Intellij IDEA中使用好Debug&#xff0c;主要包括如下内容&#xff1a; 一、Debug开篇 ①、以Debug模式启动服务&#xff0c;左边的一个按钮则是以Run模式启动。在开发中&#xff0c;我一般会直接启动Debug模式&#xff0c;方便随时调试代码。 ②、断点&#xff1a;在左边行…