【数据结构与算法】(5)基础数据结构之队列 链表实现、环形数组实现详细代码示例讲解

目录

    • 2.4 队列
      • 1) 概述
      • 2) 链表实现
      • 3) 环形数组实现

在这里插入图片描述

2.4 队列

1) 概述

计算机科学中,queue 是以顺序的方式维护的一组数据集合,在一端添加数据,从另一端移除数据。习惯来说,添加的一端称为,移除的一端称为,就如同生活中的排队买商品

In computer science, a queue is a collection of entities that are maintained in a sequence and can be modified by the addition of entities at one end of the sequence and the removal of entities from the other end of the sequence

先定义一个简化的队列接口

public interface Queue<E> {

    /**
     * 向队列尾插入值
     * @param value 待插入值
     * @return 插入成功返回 true, 插入失败返回 false
     */
    boolean offer(E value);

    /**
     * 从对列头获取值, 并移除
     * @return 如果队列非空返回对头值, 否则返回 null
     */
    E poll();

    /**
     * 从对列头获取值, 不移除
     * @return 如果队列非空返回对头值, 否则返回 null
     */
    E peek();

    /**
     * 检查队列是否为空
     * @return 空返回 true, 否则返回 false
     */
    boolean isEmpty();

    /**
     * 检查队列是否已满
     * @return 满返回 true, 否则返回 false
     */
    boolean isFull();
}

2) 链表实现

下面以单向环形带哨兵链表方式来实现队列

在这里插入图片描述

代码

public class LinkedListQueue<E>
        implements Queue<E>, Iterable<E> {

    private static class Node<E> {
        E value;
        Node<E> next;

        public Node(E value, Node<E> next) {
            this.value = value;
            this.next = next;
        }
    }

    private Node<E> head = new Node<>(null, null);
    private Node<E> tail = head;
    private int size = 0;
    private int capacity = Integer.MAX_VALUE;

    {
        tail.next = head;
    }

    public LinkedListQueue() {
    }

    public LinkedListQueue(int capacity) {
        this.capacity = capacity;
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        Node<E> added = new Node<>(value, head);
        tail.next = added;
        tail = added;
        size++;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        Node<E> first = head.next;
        head.next = first.next;
        if (first == tail) {
            tail = head;
        }
        size--;
        return first.value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return head.next.value;
    }

    @Override
    public boolean isEmpty() {
        return head == tail;
    }

    @Override
    public boolean isFull() {
        return size == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            Node<E> p = head.next;
            @Override
            public boolean hasNext() {
                return p != head;
            }
            @Override
            public E next() {
                E value = p.value;
                p = p.next;
                return value;
            }
        };
    }
}

3) 环形数组实现

好处

  1. 对比普通数组,起点和终点更为自由,不用考虑数据移动
  2. “环”意味着不会存在【越界】问题
  3. 数组性能更佳
  4. 环形数组比较适合实现有界队列、RingBuffer 等

在这里插入图片描述

下标计算

例如,数组长度是 5,当前位置是 3 ,向前走 2 步,此时下标为 ( 3 + 2 ) % 5 = 0 (3 + 2)\%5 = 0 (3+2)%5=0

在这里插入图片描述

( c u r + s t e p ) % l e n g t h (cur + step) \% length (cur+step)%length

  • cur 当前指针位置
  • step 前进步数
  • length 数组长度

注意:

  • 如果 step = 1,也就是一次走一步,可以在 >= length 时重置为 0 即可

判断空

在这里插入图片描述

判断满

在这里插入图片描述

满之后的策略可以根据业务需求决定

  • 例如我们要实现的环形队列,满之后就拒绝入队

代码

public class ArrayQueue<E> implements Queue<E>, Iterable<E>{

    private int head = 0;
    private int tail = 0;
    private final E[] array;
    private final int length;

    @SuppressWarnings("all")
    public ArrayQueue(int capacity) {
        length = capacity + 1;
        array = (E[]) new Object[length];
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        array[tail] = value;
        tail = (tail + 1) % length;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head];
        head = (head + 1) % length;
        return value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head];
    }

    @Override
    public boolean isEmpty() {
        return tail == head;
    }

    @Override
    public boolean isFull() {
        return (tail + 1) % length == head;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = head;
            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public E next() {
                E value = array[p];
                p = (p + 1) % array.length;
                return value;
            }
        };
    }
}

判断空、满方法2

引入 size

public class ArrayQueue2<E> implements Queue<E>, Iterable<E> {

    private int head = 0;
    private int tail = 0;
    private final E[] array;
    private final int capacity;
    private int size = 0;

    @SuppressWarnings("all")
    public ArrayQueue2(int capacity) {
        this.capacity = capacity;
        array = (E[]) new Object[capacity];
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        array[tail] = value;
        tail = (tail + 1) % capacity;
        size++;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head];
        head = (head + 1) % capacity;
        size--;
        return value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head];
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    @Override
    public boolean isFull() {
        return size == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = head;

            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public E next() {
                E value = array[p];
                p = (p + 1) % capacity;
                return value;
            }
        };
    }
}

判断空、满方法3

  • head 和 tail 不断递增,用到索引时,再用它们进行计算,两个问题

    • 如何保证 head 和 tail 自增超过正整数最大值的正确性

    • 如何让取模运算性能更高

  • 答案:让 capacity 为 2 的幂

public class ArrayQueue3<E> implements Queue<E>, Iterable<E> {

    private int head = 0;
    private int tail = 0;
    private final E[] array;
    private final int capacity;

    @SuppressWarnings("all")
    public ArrayQueue3(int capacity) {
        if ((capacity & capacity - 1) != 0) {
            throw new IllegalArgumentException("capacity 必须为 2 的幂");
        }
        this.capacity = capacity;
        array = (E[]) new Object[this.capacity];
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        array[tail & capacity - 1] = value;
        tail++;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head & capacity - 1];
        head++;
        return value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head & capacity - 1];
    }

    @Override
    public boolean isEmpty() {
        return tail - head == 0;
    }

    @Override
    public boolean isFull() {
        return tail - head == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = head;

            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public E next() {
                E value = array[p & capacity - 1];
                p++;
                return value;
            }
        };
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/370759.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32学习笔记(五) —— 按键翻转LED

前面我们分析过GPIO的各个寄存器&#xff0c;探讨了如何使用GPIO点亮LED&#xff0c;这里再验证一下GPIO的输入功能 1.硬件连接 我们在开发板上将按键连接到了PA0引脚&#xff0c;按键外接了上拉电阻&#xff0c;默认状态下PA0引脚处于高电平&#xff0c;当按键按下&#xff0…

七月论文审稿GPT第2.5版:微调GPT3.5 turbo 16K和llama2 13B以扩大对GPT4的优势

前言 我司自去年7月份成立大模型项目团队以来&#xff0c;至今已有5个项目组&#xff0c;其中 第一个项目组的AIGC模特生成系统已经上线在七月官网第二项目组的论文审稿GPT则将在今年3 4月份对外上线发布第三项目组的RAG知识库问答第1版则在春节之前已就绪至于第四、第五项目…

【stm32】hal库学习笔记-ADC模数转换(超详细!)

【stm32】hal库学习笔记-ADC模数转换&#xff08;超详细&#xff01;&#xff09; 本篇章介绍了ADC实现电压检测的三种方式 ADC原理及选型 ADC将连续的模拟电压信号转换为二进制的数字信号 选型参数 速度&#xff08;采样频率&#xff09; 功耗 精度 转换原理 ADC hal库驱…

一、Redis之NoSQL

1.1 什么是NoSQL NoSQL&#xff08;Not Only SQL&#xff09;即不仅仅是SQL&#xff0c;泛指非关系型的数据库&#xff0c;它可以作为关系型数据库的良好补充。随着互联网web2.0网站的兴起&#xff0c;非关系型的数据库现在成了一个极其热门的新领域&#xff0c;非关系数据库产…

[Linux 进程控制(二)] 写时拷贝 - 进程终止

文章目录 1、写时拷贝2、进程终止2.1 进程退出场景2.1.1 退出码2.1.2 错误码错误码 vs 退出码2.1.3 代码异常终止引入 2.2 进程常见退出方法2.2.1 exit函数2.2.2 _exit函数 本片我们主要来讲进程控制&#xff0c;讲之前我们先把写时拷贝理清&#xff0c;然后再开始讲进程控制。…

图论练习2

内容&#xff1a;路径计数DP&#xff0c;差分约束 最短路计数 题目大意 给一个个点条边的无向无权图&#xff0c;问从出发到其他每个点的最短路有多少条有自环和重边&#xff0c;对答案 解题思路 设边权为1&#xff0c;跑最短路 表示的路径数自环和重边不影…

基于OpenCV灰度图像转GCode的双向扫描实现

基于OpenCV灰度图像转GCode的双向扫描实现 引言激光雕刻简介OpenCV简介实现步骤 1.导入必要的库2. 读取灰度图像3. 图像预处理4. 生成GCode 1. 简化版的双向扫描2. 优化版的双向扫描 5. 保存生成的GCode6. 灰度图像双向扫描代码示例 总结 系列文章 ⭐深入理解G0和G1指令&…

【深入浅出Java性能调优】「底层技术原理体系」详细分析探索Java服务器性能监控Metrics框架的实现原理分析(Dropwizard度量基础案例指南)

深入探索Java服务器性能监控Metrics框架的实现原理分析 前提介绍Dropwizard MetricsDropwizard的特点Dropwizard的开发案例需要引入Maven依赖常用度量类型Meter(每秒请求数为单位测量请求率)定义度量核心MetricRegistry构建对应的Meter指标对象请求标记采样业务方法控制报告器…

利用Excel爬取网页数据

想要获取网页上的表格数据&#xff0c;可以通过Excel自带的功能&#xff0c;从网站导入数据&#xff0c;并且可以实时刷新最新数据。具体步骤如下&#xff1a; 1、新建Excel&#xff0c;打开&#xff0c;选择【数据】-【自网站】 2、在弹出的对话框中输入目标网址&#xff0c;…

Java常用

文章目录 基础基础数据类型内部类Java IOIO多路复用重要概念 Channel **通道**重要概念 Buffer **数据缓存区**重要概念 Selector **选择器** 关键字final 元注解常用接口异常处理ErrorException JVM与虚拟机JVM内存模型本地方法栈虚拟机栈 Stack堆 Heap方法区 Method Area (JD…

JavaSE-项目小结-IP归属地查询(本地IP地址库)

一、项目介绍 1. 背景 IP地址是网络通信中的重要标识&#xff0c;通过分析IP地址的归属地信息&#xff0c;可以帮助我们了解访问来源、用户行为和网络安全等关键信息。例如应用于网站访问日志分析&#xff1a;通过分析访问日志中的IP地址&#xff0c;了解网站访问者的地理位置分…

毫米波雷达在汽车领域的原理、优势和未来趋势

1 毫米波雷达的原理 汽车引入毫米波雷达最初主要是为了实现盲点监测和定距巡航。毫米波实质上是电磁波&#xff0c;其频段位于无线电和可见光、红外线之间&#xff0c;频率范围为10GHz-200GHz。工作原理类似一般雷达&#xff0c;通过发射无线电波并接收回波&#xff0c;利用障…

vscode 无法远程连接waiting the server log

使用版本 报错信息 相关日志 [17:32:59.765] > Waiting for server log... [17:32:59.801] > Waiting for server log... [17:32:59.831] > > * > * Visual Studio Code Server > * > * By using the software, you agree to > * the Visual Studio…

Github开源项目Excalidraw:简洁易用的手绘风格白板工具

Excalidraw是Github上的一个开源项目&#xff0c;它提供了一个简洁易用的手绘图形创建工具&#xff0c;用户可以通过它创建流程图、示意图、架构图和其他各种图形。本文将介绍Excalidraw的特点和功能&#xff0c;并探讨其在技术层面上的优势和扩展能力。 GitHub地址&#xff1a…

Mysql学习记录补充

索引 在无索引情况下&#xff0c;就需要从第一行开始扫描&#xff0c;一直扫描到最后一行&#xff0c;我们称之为 全表扫描&#xff0c;性能很低。 如果我们针对于这张表建立了索引&#xff0c;假设索引结构就是二叉树&#xff0c;那么也就意味着&#xff0c;会对age这个字段…

【数据结构与算法】(8)基础数据结构 之 优先级队列的无序数组实现、有序数组实现、堆实现详细代码示例讲解

目录 2.7 优先级队列1) 无序数组实现2) 有序数组实现3) 堆实现习题E01. 合并多个有序链表-Leetcode 23 2.7 优先级队列 1) 无序数组实现 要点 入队保持顺序出队前找到优先级最高的出队&#xff0c;相当于一次选择排序 public class PriorityQueue1<E extends Priority&g…

Amazon Bedrock ——使用Prompt构建AI软文撰写师的生成式人工智能应用程序

Amazon Bedrock 是一项完全托管的服务&#xff0c;通过单个 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和 Amazon 等领先人工智能公司的高性能基础模型&#xff08;FM&#xff09;&#xff0c;以及通过安全性、隐私性和负责任的 AI 构建生成式人工智能应…

QCustomplot实现灰度曲线图

从 QCustomplot官网 https://www.qcustomplot.com/index.php/download 下载支持文件。首页有些demo可以进行参考学习。 新建一个Qt工程&#xff0c;将下载得到的qcustomplot.h和qcustomplot.cpp文件加入到当前工程。pro文件中加上 printsupport 在ui界面中&#xff0c;添加一…

【算法与数据结构】739、LeetCode每日温度

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;   程序如下&#xff1a; 复杂度分析&#xff1a; 时间复杂度&#xff1a; O ( ) O() O()。空间复…

CocosCreator3.8源码分析

Cocos Creator架构 Cocos Creator 拥有两套引擎内核&#xff0c;C 内核 和 TypeScript 内核。C 内核用于原生平台&#xff0c;TypeScript 内核用于 Web 和小游戏平台。 在引擎内核之上&#xff0c;是用 TypeScript 编写的引擎框架层&#xff0c;用以统一两套内核的差异&#xf…