毫米波雷达在汽车领域的原理、优势和未来趋势

1 毫米波雷达的原理

汽车引入毫米波雷达最初主要是为了实现盲点监测和定距巡航。毫米波实质上是电磁波,其频段位于无线电和可见光、红外线之间,频率范围为10GHz-200GHz。工作原理类似一般雷达,通过发射无线电波并接收回波,利用障碍物反射波的时间差确定障碍物距离,通过反射波的频率偏移确定相对速度。

2 毫米波雷达未被抛弃的原因

2.1 天气原因

激光雷达在极端天气下性能受限,而毫米波雷达能够穿透雾、雨、雪等,适应各种天气条件。毫米波雷达在高速行驶场景中表现更出色,其探测距离可轻松超过200米,明显优于激光雷达的150米。

2.2 成本价格

激光雷达因收发器和组装工艺要求高而成本难降,而毫米波雷达采用硅基芯片制造,成本更具竞争优势。毫米波雷达的价格约为1.5千元,而激光雷达则以万元计价。此外,激光雷达获取的大量数据需要更高性能的处理器,增加了整体成本。在简单场景中,工程师更倾向选择毫米波雷达。

3 毫米波雷达芯片发展趋势

当前汽车领域的毫米波雷达主要采用FMCW技术,即通过调频毫米波信号来确定目标位置和相对速度。发展趋势包括:

3.1 从24GHz到77GHz频段的演进

汽车领域常见的毫米波雷达频段包括24GHz、77GHz和79GHz。随着24GHz频段的规划过期,77GHz频段成为主流,具备更好的性能,特别在紧急制动和自动跟车等领域。

3.2 CMOS工艺的主流化

传统的III-V族工艺成本高,而CMOS工艺在28nm节点后已能满足毫米波雷达的要求,逐渐成为主流工艺。

3.3 走向高分辨率

随着自动驾驶的发展,毫米波雷达逐渐追求高分辨率,特别在空间分辨率上。在自动驾驶领域,高带宽的79GHz频段将得到广泛应用。

4 主要区别

在这里插入图片描述

三者对比:

  • 分辨率:相机最高,Lidar次之,Radar最低
  • 抗天气影响能力:Radar最好,Camera次之,Lidar最低
  • 追踪物体速度能力:Radar最好,Camera和Lidar差不多
  • 追踪物体高度能力:Lidar最好,Camera次之,Radar最低
  • 追踪距离能力:Lidar,Radar都很准确,Camera最低
  • 辨别能力:Camera和Lidar都较好,Radar较低

5 总结

毫米波雷达作为传感器难以被取代,其全天候工作状态、高测速、测距精度以及穿透力是其最大优势。尽管存在不足,但未来趋势将走向融合,特别是在自动驾驶领域,三大传感器将相互融合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/370744.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vscode 无法远程连接waiting the server log

使用版本 报错信息 相关日志 [17:32:59.765] > Waiting for server log... [17:32:59.801] > Waiting for server log... [17:32:59.831] > > * > * Visual Studio Code Server > * > * By using the software, you agree to > * the Visual Studio…

Github开源项目Excalidraw:简洁易用的手绘风格白板工具

Excalidraw是Github上的一个开源项目,它提供了一个简洁易用的手绘图形创建工具,用户可以通过它创建流程图、示意图、架构图和其他各种图形。本文将介绍Excalidraw的特点和功能,并探讨其在技术层面上的优势和扩展能力。 GitHub地址&#xff1a…

Mysql学习记录补充

索引 在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。 如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段…

【数据结构与算法】(8)基础数据结构 之 优先级队列的无序数组实现、有序数组实现、堆实现详细代码示例讲解

目录 2.7 优先级队列1) 无序数组实现2) 有序数组实现3) 堆实现习题E01. 合并多个有序链表-Leetcode 23 2.7 优先级队列 1) 无序数组实现 要点 入队保持顺序出队前找到优先级最高的出队&#xff0c;相当于一次选择排序 public class PriorityQueue1<E extends Priority&g…

Amazon Bedrock ——使用Prompt构建AI软文撰写师的生成式人工智能应用程序

Amazon Bedrock 是一项完全托管的服务&#xff0c;通过单个 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和 Amazon 等领先人工智能公司的高性能基础模型&#xff08;FM&#xff09;&#xff0c;以及通过安全性、隐私性和负责任的 AI 构建生成式人工智能应…

QCustomplot实现灰度曲线图

从 QCustomplot官网 https://www.qcustomplot.com/index.php/download 下载支持文件。首页有些demo可以进行参考学习。 新建一个Qt工程&#xff0c;将下载得到的qcustomplot.h和qcustomplot.cpp文件加入到当前工程。pro文件中加上 printsupport 在ui界面中&#xff0c;添加一…

【算法与数据结构】739、LeetCode每日温度

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;   程序如下&#xff1a; 复杂度分析&#xff1a; 时间复杂度&#xff1a; O ( ) O() O()。空间复…

CocosCreator3.8源码分析

Cocos Creator架构 Cocos Creator 拥有两套引擎内核&#xff0c;C 内核 和 TypeScript 内核。C 内核用于原生平台&#xff0c;TypeScript 内核用于 Web 和小游戏平台。 在引擎内核之上&#xff0c;是用 TypeScript 编写的引擎框架层&#xff0c;用以统一两套内核的差异&#xf…

12. onnx转为rknn测试时有很多重叠框的修改(python)

我们下载rknn-toolkit2-master后并进行前面的处理后&#xff0c;进入到rknn-toolkit2-master\examples\onnx\yolov5文件夹&#xff0c;里面有个test.py文件&#xff0c;打开该文件&#xff0c;其代码如下&#xff1a; # -*- coding: utf-8 -*- # coding:utf-8import os import…

Photoshop CS6 下载安装教程,保姆级教程,小白也能轻松搞的,附安装包

前言 Adobe Photoshop CS6强大的照片拍摄和突破性的新功能&#xff0c;用于复杂的图形、选择、逼真的绘画和装饰智能。创建惊人的高动态范围(HDR)图像。用逼真的笔触和混合的颜色绘画。消除噪音&#xff0c;添加种子&#xff0c;并绘制一个国家最先进的摄影设备的草图。凭借原…

多播路由选择

目录 1 多播路由选择 1.1 转发多播数据报时使用三种方法 (1) 洪泛与剪除 RPB 的要点&#xff1a; 1.检查&#xff0c;转发 2.形成以源为根节点的多播转发树 3.剪枝与嫁接 (2) 隧道技术 (tunneling) (3) 基于核心的发现技术 1.2 几种多播路由选择协议 1 多播路由选择 …

挑战杯 python 爬虫与协同过滤的新闻推荐系统

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python 爬虫与协同过滤的新闻推荐系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&…

算法42:天际线问题(力扣218题)---线段树

218. 天际线问题 城市的 天际线 是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。给你所有建筑物的位置和高度&#xff0c;请返回 由这些建筑物形成的 天际线 。 每个建筑物的几何信息由数组 buildings 表示&#xff0c;其中三元组 buildings[i] [lefti, righti, heig…

#RAG|NLP|Jieba|PDF2WORD# pdf转word-换行问题

文档在生成PDF时,文宁都发生了什么。本文讲解了配置对象、resources对象和content对象的作用,以及字体、宇号、坐标、文本摆放等过程。同时,还解释了为什么PDF转word或转文字都是一行一行的以及为什么页眉页脚的问题会加大识别难度。最后提到了文本的编码和PDF中缺少文档结构标…

五、RHCE--Web服务器

五、RHCE--Web服务器 1、web服务器简介&#xff08;1&#xff09;什么是www&#xff08;2&#xff09;网址及HTTP简介 2、web服务器的类型&#xff08;1&#xff09;仅提供用户浏览的单向静态网页&#xff08;2&#xff09;提供用户互动接口的动态网站 3、虚拟主机配置实战3.1 …

sqlserver alwayson部署文档手册

1、ALWAYSON概述 详细介绍参照官网详细文档,我就不在这里赘述了&#xff1a; https://learn.microsoft.com/zh-cn/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server?viewsql-server-ver16 下图显示的是一个包含一个…

【iOS ARKit】3D人体姿态估计实例

与2D人体姿态检测一样&#xff0c;在ARKit 中&#xff0c;我们不必关心底层的人体骨骼关节点检测算法&#xff0c;也不必自己去调用这些算法&#xff0c;在运行使用 ARBodyTrackingConfiguration 配置的 ARSession 之后&#xff0c;基于摄像头图像的3D人体姿态估计任务也会启动…

LeetCode:292.Nim 游戏

大一开学到现在&#xff0c;我不禁思考一个问题&#xff1a;代码重要吗&#xff1f; 我的答案是&#xff0c;根本不重要&#xff0c;或者说&#xff0c;是次要的。我认为分析问题&#xff0c;和画图是写题的开始&#xff0c;方法的学习&#xff0c;和灵活运用是目的。代码从来…

canvas设置图形各种混合模式,类似photoshop效果

查看专栏目录 canvas实例应用100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…

(6)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—使用Adaboost建模及工作环境下的数据分析整理

目录 一、为什么要使用Adaboost建模? 二、泰坦尼克号分析(工作环境) (插曲)Python可以引入任何图形及图形可视化工具 三、数据分析 四、模型建立 1、RandomForestRegressor预测年龄 2、LogisticRegression建模 引入GridSearchCV 引入RandomizedSearchCV 3、Deci…