Amazon Bedrock ——使用Prompt构建AI软文撰写师的生成式人工智能应用程序

Amazon Bedrock 是一项完全托管的服务,通过单个 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和 Amazon 等领先人工智能公司的高性能基础模型(FM),以及通过安全性、隐私性和负责任的 AI 构建生成式人工智能应用程序所需的一系列广泛功能。

在这里插入图片描述
本文将探索Amazon Bedrock的各类内置对话应用并根据需求创建一个自己的对话应用

一、模型简介

登录Amazon Bedrock的控制台后:https://aws.amazon.com/cn/bedrock/?trk=d663ea2c-78d3-497f-a8c5-4bf7949cc694&sc_channel=el
可以看到Amazon Bedrock支持多个基础模型(foundation model),其中包括Amazon Titan,Claude,Jurassic,Command,Stable Diffusion 以及 Llama2。

1.1、Claude

Claude 2.1 是 Anthropic 最新的大型语言模型(LLM),具有业界领先的上下文窗口(支持 20 万个令牌),降低了幻觉率,并提高了长文档的准确性。
在这里插入图片描述

  • 支持20万个令牌的上下文窗口:Anthropic 将可以传递给 Claude 的信息量增加了一倍,扩展到 20 万个令牌,相当于大约 15 万个单词,或超过 500 页的材料,能够与大量内容或数据进行交互,因此可以进行总结、执行问答、预测趋势、比较和对比多个文档等等。
  • 胜任多种任务:Claude 可以用于编写复杂对话,生成创意内容,执行复杂推理,编写代码,以及提供详细指导。它可以编辑、改写、总结、分类、提取结构化数据,并根据内容进行问答等。
  • 处于前沿的安全保障:Claude 基于 Anthropic 对安全性的领先研究,采用 Constitutional AI 等技术构建。Claude 的设计目标是降低品牌风险,致力于提供有益、诚实且无害的服务。

1.2、Amazon Titan

Amazon Bedrock 独有的 Amazon Titan 系列模型融合了 Amazon 25 年来在其业务范围内积累的人工智能和机器学习创新的经验Amazon Titan 模型由 AWS 创建并在大型数据集上进行预训练,使其成为强大的通用模型,旨在支持各种用例,同时还支持负责任地使用 AI。您可以按原样使用,也可以根据自己的数据私下进行自定义。

在这里插入图片描述

  • 广泛的应用范围:高性能图像、多模态和文本模型为广泛的生成式人工智能应用提供支持,例如内容创建、图像生成以及搜索和推荐体验。
  • 负责任和道德性:所有 Amazon Titan FM 都为负责任地使用 AI 提供内置支持,具体方法是检测并移除数据中的有害内容、拒绝不当的用户输入以及筛选模型输出。

Titan 模型分为三种类型:嵌入、文本生成和图像生成。

  • Titan Embeddings G1 – 文本模型将文本输入(单词、短语或可能的大型文本单元)转换为包含文本语义的数字表示(称为嵌入)。 虽然该法学硕士不会生成文本,但它对于个性化和搜索等应用程序很有用。 通过比较嵌入,该模型将产生比单词匹配更相关和上下文的响应。 新的 Titan Multimodal Embeddings G1 模型适用于通过文本搜索图像、通过图像相似性或通过文本和图像的组合搜索图像等用例。 它将输入图像或文本转换为嵌入,该嵌入在同一语义空间中包含图像和文本的语义。
  • Titan Text 模型是生成式 LLM,适用于摘要、文本生成(例如,创建博客文章)、分类、开放式问答和信息提取等任务。 他们还接受过许多不同编程语言以及表格、JSON 和 csv 等富文本格式的培训。
  • Titan Image Generator G1 是一种生成基础模型,可从自然语言文本生成图像。 该模型还可用于编辑或生成现有或生成的图像的变体。

1.3、Llama

Llama 2 是一组经过预训练和微调的大型语言模型(LLM),其规模从 70 亿参数到 700 亿参数不等。 Llama 模型的关键特征之一是它能够生成连贯且上下文相关的文本。 这是通过使用注意力机制来实现的,该机制允许模型在生成输出时关注输入序列的不同部分。 此外,Llama 模型使用一种称为“掩码语言建模”的技术在大型文本语料库上对模型进行预训练,这有助于它学习预测句子中缺失的单词。
在这里插入图片描述

  • 超100万条的人工标注:经过微调的模型 Llama Chat 使用了公开的指令数据集和超过 100 万条人工标注。
  • 2 万亿个令牌训练而成:Llama 2 模型使用来自在线公共数据来源的 2 万亿个令牌进行训练。
  • 零基础设施管理:Amazon Bedrock 是第一个为 Llama 2 提供完全托管的 API 的公有云服务。各种规模的组织都可以访问 Amazon Bedrock 上的 Llama 2 Chat 模型,而无需管理底层基础设施。

Llama 模型已被证明在各种自然语言处理任务上表现良好,包括语言翻译、问答和文本摘要,并且还能够生成类似人类的文本,这使得 Llama 模型成为创意写作和其他应用程序的有用工具。 自然语言生成很重要。

总的来说,Llama 模型是强大且多功能的语言模型,可用于广泛的自然语言处理任务。 该模型能够生成连贯且上下文相关的文本,这使得它对于聊天机器人、虚拟助手和语言翻译等应用程序特别有用。

二、使用Amazon Bedrock 根据需求创建一个自己的对话应用

2.1、登录与授权

首先完成AWS账号登陆,并访问到Amazon Bedrock的UI:https://aws.amazon.com/cn/bedrock/?trk=d663ea2c-78d3-497f-a8c5-4bf7949cc694&sc_channel=el
在这里插入图片描述
其次完成模型授权,点击左侧导航的Overview标签,然后可以看到右侧的Spotlight板块,点击Request model access按钮,勾选需要的模型,如果要体验GPT-对话功能,必须要勾选任意一项Text标签的模型,如果需要体验Stable Diffusion-文本生成图像功能,必须要勾选带Image标签的模型,然后稍等片刻。

2.2、构建自己的对话应用

首先展开playgrounds栏目,然后点击Select model,选择需要使用的模型,这里选择使用Llama 2 Chat 70B进行演示:
在这里插入图片描述
然后进入对话页面,下侧为输入的prompt区域:
在这里插入图片描述
比如输入prompt:

您是一位有着9年经验与能力的互联网软文和高端文案撰写人,现在私域运营团队的文案策划。1、负责社群文案工作,编辑用户感兴趣的话题,保证社群活跃度,提升用户黏性;2、负责社群的人设定位及内容产出,内容的规划和撰写,包含内容策划、素材采集;3、负责通过内容运营挖掘用户需求提高粉丝活跃度、增强用户黏性和转化;4、深入了解品牌项目产品及资源,以及客户需求和产品特性为核心定制个性化方案;现在请帮我策划一个龙年抽奖活动软文

输出效果如下:
在这里插入图片描述

右侧我们可以修改模型超参数,可以对输出长度、温度、Top P值进行调整后继续测试。

三、Amazon Bedrock 入门

想要快速学习使用Amazon Bedrock 吗?《Amazon Bedrock 入门》带你免费、快速、简单上手 Amazon Bedrock!

在本入门课程中,你将了解 Amazon Bedrock 的优势、功能、典型使用案例、技术概念和成本。

https://study.163.com/course/introduction/1213665810.htm?from=AWS-social-FY24-KOC-HJS

在这里插入图片描述

在此课程中,你还将回顾使用 Amazon Bedrock 以及其他 Amazon Web Services 产品构建 Chatbot 解决方案的架构。无论您是初学者还是经验丰富的开发者,这个课程将为您提供一个全面的学习体验,并在这个充满创造力的旅程中取得丰硕的成果!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/370737.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

QCustomplot实现灰度曲线图

从 QCustomplot官网 https://www.qcustomplot.com/index.php/download 下载支持文件。首页有些demo可以进行参考学习。 新建一个Qt工程,将下载得到的qcustomplot.h和qcustomplot.cpp文件加入到当前工程。pro文件中加上 printsupport 在ui界面中,添加一…

【算法与数据结构】739、LeetCode每日温度

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:   程序如下: 复杂度分析: 时间复杂度: O ( ) O() O()。空间复…

CocosCreator3.8源码分析

Cocos Creator架构 Cocos Creator 拥有两套引擎内核,C 内核 和 TypeScript 内核。C 内核用于原生平台,TypeScript 内核用于 Web 和小游戏平台。 在引擎内核之上,是用 TypeScript 编写的引擎框架层,用以统一两套内核的差异&#xf…

12. onnx转为rknn测试时有很多重叠框的修改(python)

我们下载rknn-toolkit2-master后并进行前面的处理后,进入到rknn-toolkit2-master\examples\onnx\yolov5文件夹,里面有个test.py文件,打开该文件,其代码如下: # -*- coding: utf-8 -*- # coding:utf-8import os import…

Photoshop CS6 下载安装教程,保姆级教程,小白也能轻松搞的,附安装包

前言 Adobe Photoshop CS6强大的照片拍摄和突破性的新功能,用于复杂的图形、选择、逼真的绘画和装饰智能。创建惊人的高动态范围(HDR)图像。用逼真的笔触和混合的颜色绘画。消除噪音,添加种子,并绘制一个国家最先进的摄影设备的草图。凭借原…

多播路由选择

目录 1 多播路由选择 1.1 转发多播数据报时使用三种方法 (1) 洪泛与剪除 RPB 的要点: 1.检查,转发 2.形成以源为根节点的多播转发树 3.剪枝与嫁接 (2) 隧道技术 (tunneling) (3) 基于核心的发现技术 1.2 几种多播路由选择协议 1 多播路由选择 …

挑战杯 python 爬虫与协同过滤的新闻推荐系统

1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python 爬虫与协同过滤的新闻推荐系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖&…

算法42:天际线问题(力扣218题)---线段树

218. 天际线问题 城市的 天际线 是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。给你所有建筑物的位置和高度,请返回 由这些建筑物形成的 天际线 。 每个建筑物的几何信息由数组 buildings 表示,其中三元组 buildings[i] [lefti, righti, heig…

#RAG|NLP|Jieba|PDF2WORD# pdf转word-换行问题

文档在生成PDF时,文宁都发生了什么。本文讲解了配置对象、resources对象和content对象的作用,以及字体、宇号、坐标、文本摆放等过程。同时,还解释了为什么PDF转word或转文字都是一行一行的以及为什么页眉页脚的问题会加大识别难度。最后提到了文本的编码和PDF中缺少文档结构标…

五、RHCE--Web服务器

五、RHCE--Web服务器 1、web服务器简介(1)什么是www(2)网址及HTTP简介 2、web服务器的类型(1)仅提供用户浏览的单向静态网页(2)提供用户互动接口的动态网站 3、虚拟主机配置实战3.1 …

sqlserver alwayson部署文档手册

1、ALWAYSON概述 详细介绍参照官网详细文档,我就不在这里赘述了: https://learn.microsoft.com/zh-cn/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server?viewsql-server-ver16 下图显示的是一个包含一个…

【iOS ARKit】3D人体姿态估计实例

与2D人体姿态检测一样,在ARKit 中,我们不必关心底层的人体骨骼关节点检测算法,也不必自己去调用这些算法,在运行使用 ARBodyTrackingConfiguration 配置的 ARSession 之后,基于摄像头图像的3D人体姿态估计任务也会启动…

LeetCode:292.Nim 游戏

大一开学到现在,我不禁思考一个问题:代码重要吗? 我的答案是,根本不重要,或者说,是次要的。我认为分析问题,和画图是写题的开始,方法的学习,和灵活运用是目的。代码从来…

canvas设置图形各种混合模式,类似photoshop效果

查看专栏目录 canvas实例应用100专栏,提供canvas的基础知识,高级动画,相关应用扩展等信息。canvas作为html的一部分,是图像图标地图可视化的一个重要的基础,学好了canvas,在其他的一些应用上将会起到非常重…

(6)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—使用Adaboost建模及工作环境下的数据分析整理

目录 一、为什么要使用Adaboost建模? 二、泰坦尼克号分析(工作环境) (插曲)Python可以引入任何图形及图形可视化工具 三、数据分析 四、模型建立 1、RandomForestRegressor预测年龄 2、LogisticRegression建模 引入GridSearchCV 引入RandomizedSearchCV 3、Deci…

《区块链简易速速上手小册》第2章:区块链的工作原理(2024 最新版)

文章目录 2.1 分布式账本技术(DLT)2.1.1 DLT基础知识2.1.2 主要案例:供应链管理2.1.3 拓展案例 1:数字身份2.1.4 拓展案例 2:投票系统 2.2 加密和安全性2.2.1 加密技术基础2.2.2 主要案例:比特币交易2.2.3 …

【DC渗透系列】DC-2靶场

arp先扫 ┌──(root㉿kali)-[~] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:6b:ed:27, IPv4: 192.168.100.251 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.100.1 00:50:56:c0:00:08 VMware, In…

Macbook 安装金铲铲之战等 IOS 游戏

前言 Macbook 现在可以玩一下 IOS 系统上的游戏啦,以笔者的 M1 Pro 芯片为例 步骤 一、安装 PlayCover 推荐 Sonama 安装 Nightly 版本 官网地址: https://playcover.io/ Nightly: https://nightly.link/playcover/playcover/workflows/2.nightly_re…

SQL 函数(十二)

SQL 函数(十二) 一、函数分类 1.1 单行函数 单行函数仅对单个行进行运算,并且每行返回一个结果。 常见的函数类型: 字符、数字、日期、转换 1.2 多行函数 多行函数能够操纵成组的行,每个行组给出一个结果&#x…

通过 editplus 批量转换文本编码

有时候需要对文本的编码进行批量转换,文本编辑器 notepad 中的“编码”菜单可以用来转换单个的文档编码,当文档数量多的时候,一个个操作比较繁琐,通过文本编辑器 editplus 软件,可以方便快速地批量修改文本文件的编码&…