计算机设计大赛 深度学习 植物识别算法系统

文章目录

  • 0 前言
  • 2 相关技术
    • 2.1 VGG-Net模型
    • 2.2 VGG-Net在植物识别的优势
      • (1) 卷积核,池化核大小固定
      • (2) 特征提取更全面
      • (3) 网络训练误差收敛速度较快
  • 3 VGG-Net的搭建
    • 3.1 Tornado简介
      • (1) 优势
      • (2) 关键代码
  • 4 Inception V3 神经网络
    • 4.1 网络结构
  • 5 开始训练
    • 5.1 数据集
    • 5.2 关键代码
    • 5.3 模型预测
  • 6 效果展示
    • 6.1 主页面展示
    • 6.2 图片预测
    • 6.3 三维模型可视化
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码



    class MainHandler(tornado.web.RequestHandler):
        def get(self):
            self.render("index.html")
    
        def post(self):
            keras.backend.clear_session()
            img = Image.open(BytesIO(self.request.files['image'][0]['body']))
            img = img
            b_img = Image.new('RGB', (224, 224), (255, 255, 255))
            size = img.size
            if size[0] >= size[1]:
                rate = 224 / size[0]
                new_size = (224, int(size[1] * rate))
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))
    
            else:
                rate = 224 / size[1]
                new_size = (int(size[0] * rate), 224)
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))
    
            if self.get_argument("method", "mymodel") == "VGG16":
                Model = load_model("VGG16.h5")
            else:
                Model = load_model("InceptionV3.h5")
    
            data = orc_img(Model,b_img)
            self.write(json.dumps(
                {"code": 200, "data": data
                 }))
            
            def make_app():
        template_path = "templates/"
        static_path = "./static/"
    
        return tornado.web.Application([
    
            (r"/", MainHandler),
    
        ], template_path=template_path, static_path=static_path, debug=True)


    def run_server(port=8000):
        tornado.options.parse_command_line()
        app = make_app()
        app.listen(port)
        print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
        tornado.ioloop.IOLoop.current().start()


4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

    

    from keras.utils import Sequence
    import math


    class SequenceData(Sequence):
        def __init__(self, batch_size, target_size, data):
            # 初始化所需的参数
    
            self.batch_size = batch_size
            self.target_size = target_size
            self.x_filenames = data
    
        def __len__(self):
            # 让代码知道这个序列的长度
            num_imgs = len(self.x_filenames)
            return math.ceil(num_imgs / self.batch_size)
    
        def __getitem__(self, idx):
            # 迭代器部分
            batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]
            imgs = []
            y = []
            for x in batch_x:
                img = Image.open(x)
                b_img = Image.new('RGB', self.target_size, (255, 255, 255))
                size = img.size
                if size[0] >= size[1]:
                    rate = self.target_size[0] / size[0]
                    new_size = (self.target_size[0], int(size[1] * rate))
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))
    
                else:
                    rate = self.target_size[0] / size[1]
                    new_size = (int(size[0] * rate), self.target_size[0])
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))
    
                img = b_img
                if random.random() < 0.1:
                    img = img.convert("L").convert("RGB")
                if random.random() < 0.2:
                    img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度
                if random.random() < 0.2:
                    img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度
                imgs.append(img.convert("RGB"))
    
            x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(
                float) / 255  # 读取一批图片
    
            batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))
    
            return x_arrays, batch_y



5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

def orc_img(model,image):
    img =np.array(image)
    img = np.array([1 - img.astype(float) / 255])
    predict = model.predict(img)
    index = predict.argmax()
    print("CNN预测", index)

    target = target_name[index]
    index2 = np.argsort(predict)[0][-2]
    target2 = target_name[index2]
    index3 = np.argsort(predict)[0][-3]
    target3 = target_name[index3]

    return {"target": target,
            "predict": "%.2f" % (float(list(predict)[0][index]) * 64),

            "target2": target2,
            "predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),

            }

6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/370489.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一篇文章搞懂CNN(卷积神经网络)及其所含概念

目录 1. 什么是卷积神经网络&#xff1a;2. 应用领域&#xff1a;3. 架构&#xff1a;4. 卷积层的参数和名词参数&#xff1a;名词&#xff1a; 5. 注意&#xff1a;6. 经典网络&#xff1a;小结&#xff1a; 当下&#xff0c;计算机视觉在人工智能领域中扮演着至关重要的角色。…

java数组学习

目录 1.数组概念 2.数组的定义 3.数组的静态初始化 4.地址值 5.数组元素访问 6.索引 7.数组的遍历 8.数组的动态初始化 9.数组两种初始化方式的区别 10.数组常见问题 1.数组概念 数组是一种容器&#xff0c;可以同来存储同种数据类型的多个值。但是数组容器在存储数据…

漫漫数学之旅015

文章目录 经典格言数学习题古今评注名人小传 - 亚里士多德 经典格言 首要问题不是我们知道什么&#xff0c;而是我们如何知道的。——亚里士多德&#xff08;Aristotle&#xff09; 亚里士多德&#xff0c;这位古希腊的大哲学家&#xff0c;如果今天穿越到现代脱口秀舞台&…

SQL注入:sqli第一关

一、实验设备&#xff1a; 需要下载并安装phpstudy_pro&#xff0c;下载sqli-labs-php7-master解压到/phpstudy_pro/www中。 二、实验步骤&#xff1a; 1、在id1后加入一个闭合符号“ ‘ ”&#xff0c;但是当你输入?id1&#xff0c;是会报错的&#xff0c; http://127.0.…

vue3实现命令式弹窗

效果图 代码区域 首先实现弹窗组件my-modal.vue 这里实现一个极简易弹窗作为示例&#xff0c;其他功能和样式可自行补充和优化&#xff1b; <template><div class"modal-mask"><div class"modal-wrap"><div class"modal"…

Qt之使用Qt内置图标

一效果 二.原理 Qt内置图标封装在QStyle中,共七十多个图标,可以直接拿来用,能应付不少简单程序需求,不用自己去找图标并添加到资源文件了。 下面是内置图标的枚举定义: enum StandardPixmap {SP_TitleBarMenuButton,SP_TitleBarMinButton,SP_TitleBarMaxButton,SP_T…

JVM之Java内存区域

JVM-Java内存区域 Java内存区域是Java虚拟机&#xff08;JVM&#xff09;管理的内存资源的逻辑划分&#xff0c;用于存储程序运行时所需的数据。Java内存区域的合理划分和管理对于程序的性能和稳定性具有重要影响。本文将深入探讨Java内存区域的各个部分&#xff0c;包括方法区…

android inset 管理

目录 简介 Insets管理架构 Insets相关类图 app侧的类 WMS侧的类 inset show的流程 接口 流程 WMS侧确定InsetsSourceControl的流程 两个问题 窗口显示时不改变现有的inset状态 全屏窗口上的dialog 不显示statusbar问题 View 和 DecorView 设置insets信息 输入法显…

图数据库(neo4j)在工业控制中的应用

图模型 事物的模型中&#xff0c;除了它自身的某些特征之外&#xff0c;还包括它与其它事物的关系特征&#xff0c;例如一个学生的属性包括姓名&#xff0c;性别&#xff0c;年龄等属性&#xff0c;同时&#xff0c;他还有许多关系属性&#xff0c;比如他属于哪一个院系&#x…

认识Tomcat (一)

认识Tomcat &#xff08;一&#xff09; 一、服务器 1.1 服务器简介 ​ 硬件服务器的构成与一般的PC比较相似&#xff0c;但是服务器在稳定性、安全性、性能等方面都要求更高&#xff0c;因为CPU、芯片组、内存、磁盘系统、网络等硬件和普通PC有所不同。 ​ 软件服务器&…

数据分析:当当网书籍数据可视化分析

当当网书籍数据可视化分析 作者&#xff1a;i阿极 作者简介&#xff1a;Python领域新星作者、多项比赛获奖者&#xff1a;博主个人首页 &#x1f60a;&#x1f60a;&#x1f60a;如果觉得文章不错或能帮助到你学习&#xff0c;可以点赞&#x1f44d;收藏&#x1f4c1;评论&…

便宜寄快递,就选闪侠惠递,帮您省钱!

随着电子商务的发展&#xff0c;物流也越来越发达&#xff0c;人们的生活中有很多地方都与物流快递打交道。网购或者给远方的亲戚朋友寄礼物等等都需要快递。有时候就止步于昂贵的快递的&#xff0c;其实选对方法&#xff0c;寄快递并不贵... 编辑 现在一般寄快递都是选择去菜鸟…

第三百零七回

文章目录 1. 概念介绍2. 使用方法3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何在输入框中提示错误"相关的内容&#xff0c;本章回中将介绍如何在输入框中处理光标.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在使用TextField组件作为…

OpenCV 配置选项参考

介绍 注意 我们假设您已经阅读了 OpenCV 安装概述教程或具有使用 CMake 的经验。 可以通过几种不同的方式设置配置选项&#xff1a; 命令行&#xff1a;cmake -Doptionvalue ...初始缓存文件&#xff1a;cmake -C my_options.txt ...通过 GUI 进行交互 在本参考中&#xff…

InstantID:一张照片,无需训练,秒级个人写真生成

1. 引言 InstantID是一种基于扩散模型的强大解决方案。设计的即插即用模块仅使用单个面部图像就能熟练地处理各种风格的图像个性化&#xff0c;同时确保高保真度。它的核心是设计了一个新颖的 IdentityNet&#xff0c;通过强加语义和弱空间条件&#xff0c;将面部和地标图像与…

jmeter-04创建请求

文章目录 一、发送请求-查看响应流程二、新建请求三、选择请求方式&#xff0c;填写url1.发送get请求当只有请求方式不一样的时候&#xff0c;参数都填写在参数栏里面&#xff0c;GET请求与POST请求的区别&#xff1f; 2.发送post请求2.1 application/x-www-form-urlencoded2.2…

ele-h5项目使用vue3+vite+vant4开发:第四节、业务组件-SearchView组件开发

需求分析 展示切换动画搜索框输入文字&#xff0c;自动发送请求搜索结果展示搜索状态维护历史搜索展示&#xff0c;点击历史搜索后发送请求历史搜索更多切换动画效果 <script setup lang"ts"> import OpSearch from /components/OpSearch.vue import { ref } f…

Jenkins(本地Windows上搭建)上传 Pipeline构建前端项目并将生成dist文件夹上传至指定服务器

下载安装jdk https://www.oracle.com/cn/java/technologies/downloads/#jdk21-windows 下载jenkins window版 双击安装 https://www.jenkins.io/download/thank-you-downloading-windows-installer-stable/ 网页输入 http://localhost:8088/ 输入密码、设置账号、安装推…

Ainx框架实现 一

&#x1f4d5;作者简介&#xff1a; 过去日记&#xff0c;致力于Java、GoLang,Rust等多种编程语言&#xff0c;热爱技术&#xff0c;喜欢游戏的博主。 &#x1f4d7;本文收录于Ainx系列&#xff0c;大家有兴趣的可以看一看 &#x1f4d8;相关专栏Rust初阶教程、go语言基础系列…

Mysql+MybatisPlus+Vue实现基础增删改查CRUD

数据库 设计数据库 设计几个字段&#xff0c;主键id自动增长且不可为空 create table if not exists user (id bigint(20) primary key auto_increment comment 主键id,username varchar(255) not null comment 用户名,sex char(1) not null comment 性…