C语言第十八弹---指针(二)

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】

指针

1、const修饰指针

1.1、const修饰变量

1.2、const修饰指针变量

2、指针运算

2.1、指针+- 整数

2.2、指针-指针

2.3、指针的关系运算

3、野指针

3.1、野指针成因

3.2、如何规避野指针

3.2.1、指针初始化

3.2.2、小心指针越界

3.2.3、指针变量不再使用时,及时置NULL,指针使用之前检查有效性

3.2.4、避免返回局部变量的地址

4、assert断言

5、指针的使用和传址调用

5.1、strlen的模拟实现

5.2、传值调用和传址调用

总结


1、const修饰指针

1.1、const修饰变量

变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。
但是如果我们希望⼀个 变量加上⼀些限制,不能被修改 ,怎么做呢?这就是 const的作用。
#include <stdio.h>
int main()
{
 int m = 0;
 m = 20;//m是可以修改的
 const int n = 0;
 n = 20;//n是不能被修改的
 return 0;
}
上述代码中 n是不能被修改的 ,其实n本质是变量,只不过 被const修饰后,在语法上加了限制 ,只要我们在代码中 对n进行修改 ,就 不符合语法规则 ,就报错, 致使没法直接修改n。
但是如果我们绕过n,使用n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。
#include <stdio.h>
int main()
{
 const int n = 0;
 printf("n = %d\n", n);
 int*p = &n;
 *p = 20;
 printf("n = %d\n", n);
 return 0;
}
输出结果:
我们可以看到这里确实修改了,但是我们还是要思考⼀下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?

1.2、const修饰指针变量

我们看下面代码,来分析
#include <stdio.h>
//代码1
void test1()
{
 int n = 10;
 int m = 20;
 int *p = &n;
 *p = 20;//ok?
 p = &m; //ok?
}
void test2()
{
 //代码2
 int n = 10;
 int m = 20;
 const int* p = &n;
 *p = 20;//ok?
 p = &m; //ok?
}
void test3()
{
 int n = 10;
 int m = 20;
 int *const p = &n;
 *p = 20; //ok?
 p = &m; //ok?
}
void test4()
{
 int n = 10;
 int m = 20;
 int const * const p = &n;
 *p = 20; //ok?
 p = &m; //ok?
}
int main()
{
 //测试无const修饰的情况
 test1();
 //测试const放在*的左边情况
 test2();
 //测试const放在*的右边情况
 test3();
 //测试*的左右两边都有const
 test4();
 return 0;
}
结论:const修饰指针变量的时候
• const如果放在 *的左边 ,修饰的是 指针指向的内容 ,保证指针指向的内容 不能通过指针来改变。 但是指针变量本身的内容可变。
• const如果放在 *的右边 ,修饰的是 指针变量本身 ,保证了指针变量的内容 不能修改 ,但是指针指向的内容,可以通过指针改变。

2、指针运算

指针的基本运算有三种,分别是:
指针+- 整数
指针-指针
指针的关系运算

2.1、指针+- 整数

因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸瓜就能找到后面的所有元素。
指针+/-整数是另一个指针,+-的大小为指针类型大小。(暂时先简单了解,后序指针会详细讲解)
int arr[10] = {1,2,3,4,5,6,7,8,9,10};

#include <stdio.h>
//指针+- 整数
int main()
{
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 int *p = &arr[0];//首元素地址
 int i = 0;
 int sz = sizeof(arr)/sizeof(arr[0]);
 for(i=0; i<sz; i++)
 {
 printf("%d ", *(p+i));//p+i 这⾥就是指针+整数
 }
 return 0;
}

2.2、指针-指针

只有当两个指针都指向同一个数组中的元素时,才允许从一个指针减去连一个指针。两个指针相减的结果类型是ptrdiff_t,它是一种有符号整数类型。减法运算的值是两个指针在内存中的距离(该距离以间隔的单元格数为单位,而不是以字节为单位)。

下面通过指针减指针计算字符串元素个数。

//指针-指针
#include <stdio.h>
int my_strlen(char *s)
{
 char *p = s;
 while(*p != '\0' )
 p++;
 return p-s;
}
int main()
{
 printf("%d\n", my_strlen("abc"));
 return 0;
}

为什么有指针-指针而没有指针+指针呢?

由于指针加指针的值是一个相对于原数组地址相差较大的数值,该数值很有可能超越了我们所定义的数组的右边界,这样获得的地址值将是一个“盲值”,虽然它确实存在,但我们不能对这个地址做任何处理,因为我们无法得知这个位置原先存储的是什么变量,所以我们认为这是个非法的

2.3、指针的关系运算

指针的关系运算同样需要指向同一个数组中的元素。根据你所使用的操作符,比较表达式将告诉你哪个指针指向数组中更前或更后的元素,可以通过比较打印数组元素。如果随意两个指针进行比较对于实际的意义不大。

//指针的关系运算
#include <stdio.h>
int main()
{
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 int *p = &arr[0];
 int i = 0;
 int sz = sizeof(arr)/sizeof(arr[0]);
 while(p<arr+sz) //指针的⼤⼩⽐较
 {
 printf("%d ", *p);
 p++;
 }
 return 0;
}

3、野指针

概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

3.1、野指针成因

1. 指针未初始化
#include <stdio.h>
int main()
{ 
 int *p;//局部变量指针未初始化,默认为随机值
 *p = 20;
 return 0;
}
2. 指针越界访问
#include <stdio.h>
int main()
{
 int arr[10] = {0};
 int *p = &arr[0];
 int i = 0;
 for(i=0; i<=11; i++)
 {
 //当指针指向的范围超出数组arr的范围时,p就是野指针
 *(p++) = i;
 }
 return 0;
}
3. 指针指向的空间释放
#include <stdio.h>
int* test()
{
 int n = 100;//局部变量,除了函数则释放
 return &n;
}
int main()
{
 int*p = test();
 printf("%d\n", *p);
 return 0;
}

3.2、如何规避野指针

3.2.1、指针初始化

如果明确知道指针指向哪里就直接赋值地址,如果不知道指针应该指向哪里,可以给指针赋值NULL。NULL 是C语言中定义的⼀个标识符常量值是0,0也是地址,这个地址是无法使用的,读写该地址会报错。
#ifdef __cplusplus
 #define NULL 0
 #else
 #define NULL ((void *)0)
 #endif
初始化如下:
#include <stdio.h>
int main()
{
 int num = 10;
 int*p1 = &num;
 int*p2 = NULL;//p2指向空指针
 
 return 0;
}

3.2.2、小心指针越界

⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。

3.2.3、指针变量不再使用时,及时置NULL,指针使用之前检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使用这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问, 同时使用指针之前可以判断指针是否为NULL。
我们可以把野指针想象成野狗,野狗放任不管是非常危险的,所以我们可以找⼀棵树把野狗拴起来, 就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓起来,就是把野指针暂时管理起来。 不过野狗即使拴起来我们也要绕着走,不能去挑逗野狗,有点危险;对于指针也是,在使用之前,我们也要判断是否为NULL,看看是不是被拴起来的野狗,如果是不能直接使用,如果不是我们再去使用。
int main()
{
 int arr[10] = {1,2,3,4,5,67,7,8,9,10};
 int *p = &arr[0];
 for(i=0; i<10; i++)
 {
 *(p++) = i;
 }
 //此时p已经越界了,可以把p置为NULL
 p = NULL;
 //下次使⽤的时候,判断p不为NULL的时候再使⽤
 //...
 p = &arr[0];//重新让p获得地址
 if(p != NULL) //判断
 {
 //...
 }
 return 0;
}

3.2.4、避免返回局部变量的地址

如造成野指针的第3个例子,不要返回局部变量的地址。

4、assert断言

assert.h 头文 件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如果不符合,就报错终止运行。这个宏常常被称为“断言”。
assert(p != NULL);
上面代码在程序运行到这⼀行语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运行,否则就会终止运行,并且给出报错信息提示。
assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生
任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写⼊⼀条错误信息,显示没有通过的表达式,以及包含这个表达式的文件名和行号。
assert() 的使用对程序员是非常友好的,使用  assert() 有几个 好处 :它不仅能 自动标识文件和
出问题的行号 ,还有⼀种 无需更改代码就能开启或关闭 assert() 的机制 。如果已经确认程序没有问
题, 不需要再做断言 ,就在 #include <assert.h> 语句的前面,定义⼀个宏 NDEBUG 。
#define NDEBUG
#include <assert.h>
然后, 重新编译程序,编译器就会禁用⽂件中所有的 assert() 语句。 如果程序又出现问题,可以移
除这条 #define NDBUG 指令(或者把它注释掉),再次编译,这样就重新启用了 assert()
句。
assert() 缺点 是,因为 引入了额外的检查,增加了程序的运行时间。
⼀般我们可以在 Debug 中使用,在 Release 版本中选择禁用  assert 就行,在 VS 这样的集成开
发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,
Release 版本不影响用户使用时程序的效率。

5、指针的使用和传址调用

5.1、strlen的模拟实现

库函数strlen的功能是求字符串长度,统计的是字符串中 \0 之前的字符的个数。
函数原型如下:
 size_t strlen ( const char * str );
参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回长度。
如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直到 \0 就停止。
参考代码如下:
int my_strlen(const char * str)
{
 int count = 0;
 assert(str);//为空则报错,不为空则继续运行代码
 while(*str)
 {
 count++;
 str++;
 }
 return count;
}
int main()
{
 int len = my_strlen("abcdef");
 printf("%d\n", len);
 return 0;
}

5.2、传值调用和传址调用

学习指针的目的是使用指针解决问题,那什么问题,非指针不可呢?
例如:写⼀个函数,交换两个整型变量的值
⼀番思考后,我们可能写出这样的代码:
#include <stdio.h>
void Swap1(int x, int y)
{
 int tmp = x;
 x = y;
 y = tmp;
}
int main()
{
 int a = 0;
 int b = 0;
 scanf("%d %d", &a, &b);
 printf("交换前:a=%d b=%d\n", a, b);
 Swap1(a, b);
 printf("交换后:a=%d b=%d\n", a, b);
 return 0;
}
当我们运行代码,结果如下
我们发现其实没产生交换的效果,这是为什么呢?
调试⼀下,试试呢?
我们发现在main函数内部,创建了a和b, a的地址是0x00cffdd0,b的地址是0x00cffdc4 ,在调用Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是 x的地址是0x00cffcec,y的地址是0x00cffcf0 ,x和y确实接收到了a和b的值,不过x的地址和a的地址不⼀样,y的地址和b的地址不⼀样,相当于 x和y是独立的空间 ,那么在Swap1函数内部交换x和y的值, 自然不会影响a和b,当Swap1函数调用结束后回到main函数,a和b的没法交换。
Swap1函数在使用的时候,是把变量本身直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用。
结论: 实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实
参。
所以Swap是失败的了。
那怎么办呢?
我们现在要解决的就是当调用Swap函数的时候, Swap函数内部操作的就是main函数中的a和b,直接将a和b的值交换了。 那么就可以使用指针了,在main函数中将a和b的地址传递给Swap函数,Swap函数里边通过 地址间接的操作main函数中的a和b ,并达到交换的效果就好了。
#include <stdio.h>
void Swap2(int*px, int*py)
{
 int tmp = 0;
 tmp = *px;
 *px = *py;
 *py = tmp;
}
int main()
{
 int a = 0;
 int b = 0;
 scanf("%d %d", &a, &b);
 printf("交换前:a=%d b=%d\n", a, b);
 Swap2(&a, &b);
 printf("交换后:a=%d b=%d\n", a, b);
 return 0;
}
首先看输出结果:
我们可以看到实现成Swap2的方式,顺利完成了任务,这里调用Swap2函数的时候是将变量的地址传递给了函数,这种函数调用方式叫:传址调用。
传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采用传值调用。如果函数内部要修改主调函数中的变量的值,就需要传址调用。

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/369996.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】----先来聊聊【排序】(先导片)

作为一名对技术充满热情的学习者&#xff0c;我一直以来都深刻地体会到知识的广度和深度。在这个不断演变的数字时代&#xff0c;我远非专家&#xff0c;而是一位不断追求进步的旅行者。通过这篇博客&#xff0c;我想分享我在某个领域的学习经验&#xff0c;与大家共同探讨、共…

Vite+Vue3使用Vue-i18n笔记

一、下载依赖 vue-i18n yarn add vue-i18n创建存放语言文件的目录 以及配置文件的配置 我是在src/lang 新建index.ts、cn.ts、en.ts以及test文件夹其中再分别新建cn.ts以及en.ts /lang/index.ts 用于导出vue-i18n需要的配置对象 import en from "./en.ts"; import…

C#验证字符串是否包含汉字:用正则表达式 vs 用ASCII码 vs 用汉字的 Unicode 编码

目录 一、使用的方法 1.使用正则表达式验证字符串 2.使用正则表达式验证字符 3.用ASCII码判断 4.用汉字的 Unicode 编码范围判断 二、实例 1.源码 2.生成效果 验证一个字符串是否是纯汉字或者包含有汉字的前提&#xff0c;是VS编辑器的默认编码格式设置为&#xff1a;选…

项目02《游戏-05-开发》Unity3D

基于 项目02《游戏-04-开发》Unity3D &#xff0c; 【任务】UI背包系统&#xff0c; 首先将Game窗口设置成1920 * 1080&#xff0c; 设置Canvas的缩放模式&#xff0c;&#xff1a;这样设置能让窗口在任意分辨率下都以一个正确的方式显示&#xff0c; 设置数值&…

Apollo

一. 部署说明 apollo配置中心由三个组件组成&#xff1a; ConfigService 配置中心&#xff0c;客户端从这个服务拉配置&#xff0c;同时内置了Eureka、MetaService。每个环境要有一个 AdminService 配置管理服务&#xff0c;管理数据库配置&#xff0c;Portal调这个服务修改、…

缓存的概念

文章目录 一、系统缓存buffer与cachecache 的保存位置cache 的特性 二、用户层缓存DNS缓存 三、浏览器缓存过期机制最后修改时间Etag标记过期时间 expires混合使用和缓存刷新缓存刷新 cookie和session 四、CDN缓存什么是CDN用户请求CDN流程利用 302 实现转发请求重定向至最优服…

引流技术-通过文件中增加联系方式并传播

文章目录 前言文档增加联系方式扩散网盘扩散自建网站借力 注意 前言 很多人在找资料的时候可能都遇到过下图情况&#xff1a; 1、文档最后面留一个自己的联系方式&#xff1b; 2、找的一堆文件中都有相同的情况&#xff1b; 3、一段时间全网搜到的很多相同文件也有这个联系方式…

Zookeeper分布式队列实战

目录 Zookeeper分布式队列 普通方式实现 设计思路 具体实现 使用Curator实现 具体实现 注意事项 Zookeeper分布式队列 常见的消息队列有:RabbitMQ&#xff0c;RocketMQ&#xff0c;Kafka等。Zookeeper作为一个分布式的小文件管理系统&#xff0c;同样能实现简单的队列功…

【LeetCode: 2670. 找出不同元素数目差数组 + 哈希表 + 前后缀处理】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

使用PHPStudy搭建Cloudreve网盘服务

文章目录 1、前言2、本地网站搭建2.1 环境使用2.2 支持组件选择2.3 网页安装2.4 测试和使用2.5 问题解决 3、本地网页发布3.1 cpolar云端设置3.2 cpolar本地设置 4、公网访问测试5、结语 1、前言 自云存储概念兴起已经有段时间了&#xff0c;各互联网大厂也纷纷加入战局&#…

问题:下列哪些属于历史文化资源的特征( ). #学习方法#学习方法

问题&#xff1a;下列哪些属于历史文化资源的特征( ). A、稀缺性 B、脆弱性 C、可再生性 D、多样性 参考答案如图所示

Apple Vision Pro:新的隐私噩梦?

长期以来&#xff0c;苹果被誉为最注重隐私的科技公司之一&#xff0c;但如今&#xff0c;凭借售价 3499 美元的 Vision Pro&#xff0c;苹果可能已经打造出了一款终极监控机器。 作为苹果首款头戴式“空间计算”显示设备&#xff0c;号称将打造数字世界与物理世界交汇的新空间…

STL篇三:list

文章目录 前言1.list的介绍和使用1.1 list的介绍1.2 list的使用1.3 list的迭代器的失效 2.list的模拟实现2.1 结点的封装2.2 迭代器的封装2.2.1 正向迭代器2.2.2 反向迭代器 2.3 list功能的实现2.3.1 迭代器的实例化及begin()、end() 2.3.2 构造函数2.3.3 赋值运算符重载2.3.4 …

Axure RP9原型设计工具使用记录:基础操作

Axure RP9使用记录一 &#x1f4da;第一章 前言&#x1f4d7;背景&#x1f4d7;目的 &#x1f4da;第二章 基础介绍及操作&#x1f4d7;页面功能总览&#x1f4d7;基础操作&#x1f4d5;设置样式&#x1f4d5;设置交互&#x1f4d5;设置组合&#x1f4d5;设置动态面板&#x1f…

PyTorch使用

前言 系统环境&#xff1a;win10 使用Anaconda&#xff0c;Anaconda的安装自行百度。 目录 前言 创建虚拟环境 1、查看当前有哪些虚拟环境 2、创建虚拟环境pytorch 3、激活及关闭pytorch虚拟环境 4、删除pytorch虚拟环境 使用yolov5测试 1、切换至yolov5目录下&…

淘宝镜像到期如何切换镜像及如何安装淘宝镜像

淘宝镜像到期如何切换镜像及如何安装淘宝镜像 一、淘宝镜像到期如何切换新镜像二、第一次使用淘宝镜像如何配置镜像 一、淘宝镜像到期如何切换新镜像 清空缓存&#xff1a;npm cache clean --force切换镜像源&#xff1a;npm config set registry https://registry.npmmirror.…

nodejs+vue+ElementU教师科研管理系统l33wm

本次开发一套高校教师科研管理系统有管理员&#xff0c;教师&#xff0c;学院三个角色。管理员功能有个人中心&#xff0c;教师管理&#xff0c;学院管理&#xff0c;科研课题管理&#xff0c;软件著作权管理&#xff0c;论文信息管理&#xff0c;专利信息管理&#xff0c;科研…

AI大模型专题:OWASP大语言模型应用程序十大风险V1.0

今天分享的是AI大模型系列深度研究报告&#xff1a;《AI大模型专题&#xff1a;OWASP大语言模型应用程序十大风险V1.0》。 &#xff08;报告出品方&#xff1a;OWASP&#xff09; 报告共计&#xff1a;14页 LM01:2023_ 提示词注入 描述&#xff1a;提示词注入包括绕过过滤器…

稀疏场景高性能训练方案演变|京东广告算法架构体系最佳实践

近年来&#xff0c;推荐场域为提升模型的表达能力和计算能力&#xff0c;模型规模和计算复杂度大幅增加&#xff0c;同时&#xff0c;高规格硬件资源为模型迭代、算法优化带来了更大的机遇和挑战。为了应对模型规模和算力升级带来的存储、IO和计算挑战&#xff0c;京东零售广告…

docker 安装minio

MinIO 是一款高性能、分布式的对象存储系统. 它是一款软件产品, 可以100%的运行在标准硬件。即X86等低成本机器也能够很好的运行MinIO。 MinIO与传统的存储和其他的对象存储不同的是&#xff1a;它一开始就针对性能要求更高的私有云标准进行软件架构设计。因为MinIO一开始就只…