蓝桥杯嵌入式第七届真题(完成) STM32G431

蓝桥杯嵌入式第七届真题(完成) STM32G431

题目

image-20240131201129279

image-20240131201143262

image-20240131201151854

image-20240131201200654

image-20240131201208206

相关文件

main.c
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "myadc.h"
#include "key.h"
#include "i2c_hal.h"
#include "stdio.h"
#include "led.h"
#include "usart2.h"
#include "string.h"
#include "stdio.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
extern uint32_t adctimes;
extern float k;//K? 
extern float adcval;
extern uint32_t height;
extern uint8_t level;
extern unsigned char min,med,max;
uint8_t view = 0;
uint8_t lcdtext[30];
extern struct Key key[4];
extern uint32_t led1times,led2times,led3times;
extern uint8_t led2flag,led3flag;
extern uint8_t led1status,led2status,led3status;
extern uint8_t OneData;
extern uint8_t rxflag;
uint8_t txtext[20];
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void lcd_process(void);
void led_process(void);
void adc_process(void);
void key_process(void);
void rx_process(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */
	
  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC2_Init();
  MX_TIM2_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
		HAL_TIM_Base_Start_IT(&htim2);
		HAL_UART_Receive_IT(&huart1,&OneData,1);
    LCD_Init();
		I2CInit(); 
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */

    LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		E2PROM_Write(0x00,min);
		HAL_Delay(5);
		E2PROM_Write(0x01,med);
		HAL_Delay(5);
		E2PROM_Write(0x02,max);	
		HAL_Delay(5);
		LED_display(0x00);
    while (1)
    {
			adc_process();
			key_process();
			lcd_process();
			led_process();
			rx_process();
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV2;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void adc_process(void)
{
    float newadcval;
    uint8_t newlevel;
    uint32_t newheight;
    int change;
    min = E2PROM_Read(0x00);
    med = E2PROM_Read(0x01);
    max = E2PROM_Read(0x02);

    if(adctimes >= 1000)
    {
        adctimes = 0;
        newadcval = get_Adc(&hadc2);
        newheight = k * newadcval;

        if(newheight <= min)
        {
            newlevel = 0;
        }
        else if(newheight <= med)
        {
            newlevel = 1;
        }
        else if(newheight <= max)
        {
            newlevel = 2;
        }
        else
        {
            newlevel = 3;
        }


        if(level != newlevel)
        {
            led2flag = 1; // 激活液位变化指示
            change = newheight - height;
            height = newheight;
            adcval = newadcval; // 更新adcval
						level = newlevel;
            if(change > 0)
            {
                sprintf((char *)txtext, "A:H%d+L%d+U\r\n", height, level);
                HAL_UART_Transmit(&huart1, (uint8_t *)txtext, strlen((char *)txtext), 50);
            }
            else if(change < 0)
            {
                sprintf((char *)txtext, "A:H%d+L%d+D\r\n", height, level);
                HAL_UART_Transmit(&huart1, (uint8_t *)txtext, strlen((char *)txtext), 50);
            }
        }
    }
}



void lcd_process(void)
{
	switch(view)
	{
		case 0:
		{
			sprintf((char *)lcdtext,"    Liquid Level");
			LCD_DisplayStringLine(Line0,lcdtext);
			sprintf((char *)lcdtext,"   Height:%d",height);
			LCD_DisplayStringLine(Line2,lcdtext);
			sprintf((char *)lcdtext,"   ADC:%.2f",adcval);
			LCD_DisplayStringLine(Line4,lcdtext);
			sprintf((char *)lcdtext,"   Level:%d",level);
			LCD_DisplayStringLine(Line6,lcdtext);
		}
		break;
		case 1:
		{
			sprintf((char *)lcdtext,"    Parameter Setup");
			LCD_DisplayStringLine(Line0,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 1:%d",min);
			LCD_DisplayStringLine(Line2,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 2:%d",med);
			LCD_DisplayStringLine(Line4,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 3:%d",max);
			LCD_DisplayStringLine(Line6,lcdtext);
		}
		break;
		case 2:
		{
			sprintf((char *)lcdtext,"    Parameter Setup");
			LCD_DisplayStringLine(Line0,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 1:%d",min);
			LCD_SetTextColor(Green);
			LCD_DisplayStringLine(Line2,lcdtext);
			LCD_SetTextColor(White);
			sprintf((char *)lcdtext,"   Threshold 2:%d",med);
			LCD_DisplayStringLine(Line4,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 3:%d",max);
			LCD_DisplayStringLine(Line6,lcdtext);
		}
		break;
		case 3:
		{
			sprintf((char *)lcdtext,"    Parameter Setup");
			LCD_DisplayStringLine(Line0,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 1:%d",min);
			LCD_DisplayStringLine(Line2,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 2:%d",med);
			LCD_SetTextColor(Green);
			LCD_DisplayStringLine(Line4,lcdtext);
			LCD_SetTextColor(White);
			sprintf((char *)lcdtext,"   Threshold 3:%d",max);
			LCD_DisplayStringLine(Line6,lcdtext);
		}
		break;
		case 4:
		{
			sprintf((char *)lcdtext,"    Parameter Setup");
			LCD_DisplayStringLine(Line0,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 1:%d",min);
			LCD_DisplayStringLine(Line2,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 2:%d",med);
			LCD_DisplayStringLine(Line4,lcdtext);
			sprintf((char *)lcdtext,"   Threshold 3:%d",max);
			LCD_SetTextColor(Green);
			LCD_DisplayStringLine(Line6,lcdtext);
			LCD_SetTextColor(White);
		}
		break;
	
	}
}

void key_process(void)
{
	if(key[0].key_flag==1&&(view==0))
	{
		key[0].key_flag=0;
		view=1;
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
	}
	if(key[0].key_flag==1&&(view==1||view==2||view==3||view==4))
	{
		key[0].key_flag=0;
		view=0;
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
	}
	if(key[1].key_flag==1&&(view==1||view==2||view==3||view==4))
	{
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		key[1].key_flag=0;
		view++;
		if(view>4)
			view=2;
	}
	
	
	if(key[2].key_flag==1&&view==2)
	{
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		key[2].key_flag=0;
		min+=5;
		if(min>95)
			min=5;
		E2PROM_Write(0x00,min);
	}
	else if(key[2].key_flag==1&&view==3)
	{
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		key[2].key_flag=0;
		med+=5;
		if(med>95)
			med=5;
		E2PROM_Write(0x01,med);
	}
	else if(key[2].key_flag==1&&view==4)
	{
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		key[2].key_flag=0;
		max+=5;
		if(max>95)
			max=5;
		E2PROM_Write(0x02,max);
	}
	
	
	if(key[3].key_flag==1&&view==2)
	{
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		key[3].key_flag=0;
		min-=5;
		if(min<5)
			min=5;
		E2PROM_Write(0x00,min);
	}
	else if(key[3].key_flag==1&&view==3)
	{
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		key[3].key_flag=0;
		med-=5;
		if(med<5)
			med=5;
		E2PROM_Write(0x01,med);
	}
	else if(key[3].key_flag==1&&view==4)
	{
		LCD_Clear(Black);
    LCD_SetBackColor(Black);
    LCD_SetTextColor(White);
		key[3].key_flag=0;
		max-=5;
		if(max<5)
			max=5;
		E2PROM_Write(0x01,max);
	}
}

void led_process(void)
{
    // LD1处理
    if(led1times >= 1000) // 每1秒
    {
        led1times = 0;
        led1status = !led1status;
        LED_display(led1status ? 0x01 : 0x00);
    }
    
    // LD2处理
    static int led2count = 0;
    if(led2flag && led2times >= 200) // 每0.2秒
    {
        led2times = 0;
        led2status = !led2status;
        LED_display(led2status ? 0x02 : 0x00);

        if(led2status) // 只在LED从关闭状态变为开启状态时增加计数
        {
            led2count++;
        }

        if(led2count >= 5) // 闪烁5次后停止
        {
            led2flag = 0;
            led2count = 0;
        }
    }
    
    // LD3处理
    static int led3count = 0;
    if(led3flag && led3times >= 200) // 每0.2秒
    {
        led3times = 0;
        led3status = !led3status;
        LED_display(led3status ? 0x04 : 0x00);

        if(led3status) // 只在LED从关闭状态变为开启状态时增加计数
        {
            led3count++;
        }

        if(led3count >= 5) // 闪烁5次后停止
        {
            led3flag = 0;
            led3count = 0;
        }
    }
}

void rx_process(void)
{
	if(rxflag==1)
	{
		led3flag = 1;
		rxflag = 0;
		switch(OneData)
		{
			case 'C':
			{
				sprintf((char *)txtext,"C:H%d+L%d\r\n",height,level);
				HAL_UART_Transmit(&huart1,(uint8_t *)txtext,strlen((char *)txtext),50);
			}
			break;
			case 'S':
			{
				sprintf((char *)txtext,"S:TL%d+TM%d+TH%d\r\n",min,med,max);
				HAL_UART_Transmit(&huart1,(uint8_t *)txtext,strlen((char *)txtext),50);
			}
			break;
			default:
			{
				sprintf((char *)txtext,"Error!\r\n");
				HAL_UART_Transmit(&huart1,(uint8_t *)txtext,strlen((char *)txtext),50);
			}
			break;
		}
	}
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
    /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
    /* User can add his own implementation to report the file name and line number,
       tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

adc_process 中1s读取一次使用1ms进入一次SysTick_Handler 中断定时

newadcval、newlevel、newheight都是最新一次数据,与上一次数据比较是否液位发生变化

led_process中题目要求三个led按要求变化,led1要一直闪烁,led2、led3满足特定条件后才变化翻转所以使用两个标志位led2flag和led3flag同时使用静态变量led2count计数闪烁五次后关闭

image-20240131201548545

i2c_hal.c
/*
  程序说明: CT117E-M4嵌入式竞赛板GPIO模拟I2C总线驱动程序
  软件环境: MDK-ARM HAL库
  硬件环境: CT117E-M4嵌入式竞赛板
  日    期: 2020-3-1
*/

#include "i2c_hal.h"

#define DELAY_TIME	20

/**
  * @brief SDA线输入模式配置
  * @param None
  * @retval None
  */
void SDA_Input_Mode()
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7;
    GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}

/**
  * @brief SDA线输出模式配置
  * @param None
  * @retval None
  */
void SDA_Output_Mode()
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7;
    GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_OD;
    GPIO_InitStructure.Pull = GPIO_NOPULL;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}

/**
  * @brief SDA线输出一个位
  * @param val 输出的数据
  * @retval None
  */
void SDA_Output( uint16_t val )
{
    if ( val )
    {
        GPIOB->BSRR |= GPIO_PIN_7;
    }
    else
    {
        GPIOB->BRR |= GPIO_PIN_7;
    }
}

/**
  * @brief SCL线输出一个位
  * @param val 输出的数据
  * @retval None
  */
void SCL_Output( uint16_t val )
{
    if ( val )
    {
        GPIOB->BSRR |= GPIO_PIN_6;
    }
    else
    {
        GPIOB->BRR |= GPIO_PIN_6;
    }
}

/**
  * @brief SDA输入一位
  * @param None
  * @retval GPIO读入一位
  */
uint8_t SDA_Input(void)
{
	if(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_SET){
		return 1;
	}else{
		return 0;
	}
}


/**
  * @brief I2C的短暂延时
  * @param None
  * @retval None
  */
static void delay1(unsigned int n)
{
    uint32_t i;
    for ( i = 0; i < n; ++i);
}

/**
  * @brief I2C起始信号
  * @param None
  * @retval None
  */
void I2CStart(void)
{
    SDA_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SDA_Output(0);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);
}

/**
  * @brief I2C结束信号
  * @param None
  * @retval None
  */
void I2CStop(void)
{
    SCL_Output(0);
    delay1(DELAY_TIME);
    SDA_Output(0);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SDA_Output(1);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C等待确认信号
  * @param None
  * @retval None
  */
unsigned char I2CWaitAck(void)
{
    unsigned short cErrTime = 5;
    SDA_Input_Mode();
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    while(SDA_Input())
    {
        cErrTime--;
        delay1(DELAY_TIME);
        if (0 == cErrTime)
        {
            SDA_Output_Mode();
            I2CStop();
            return ERROR;
        }
    }
    SDA_Output_Mode();
    SCL_Output(0);
    delay1(DELAY_TIME);
    return SUCCESS;
}

/**
  * @brief I2C发送确认信号
  * @param None
  * @retval None
  */
void I2CSendAck(void)
{
    SDA_Output(0);
    delay1(DELAY_TIME);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C发送非确认信号
  * @param None
  * @retval None
  */
void I2CSendNotAck(void)
{
    SDA_Output(1);
    delay1(DELAY_TIME);
    delay1(DELAY_TIME);
    SCL_Output(1);
    delay1(DELAY_TIME);
    SCL_Output(0);
    delay1(DELAY_TIME);

}

/**
  * @brief I2C发送一个字节
  * @param cSendByte 需要发送的字节
  * @retval None
  */
void I2CSendByte(unsigned char cSendByte)
{
    unsigned char  i = 8;
    while (i--)
    {
        SCL_Output(0);
        delay1(DELAY_TIME);
        SDA_Output(cSendByte & 0x80);
        delay1(DELAY_TIME);
        cSendByte += cSendByte;
        delay1(DELAY_TIME);
        SCL_Output(1);
        delay1(DELAY_TIME);
    }
    SCL_Output(0);
    delay1(DELAY_TIME);
}

/**
  * @brief I2C接收一个字节
  * @param None
  * @retval 接收到的字节
  */
unsigned char I2CReceiveByte(void)
{
    unsigned char i = 8;
    unsigned char cR_Byte = 0;
    SDA_Input_Mode();
    while (i--)
    {
        cR_Byte += cR_Byte;
        SCL_Output(0);
        delay1(DELAY_TIME);
        delay1(DELAY_TIME);
        SCL_Output(1);
        delay1(DELAY_TIME);
        cR_Byte |=  SDA_Input();
    }
    SCL_Output(0);
    delay1(DELAY_TIME);
    SDA_Output_Mode();
    return cR_Byte;
}

//
void I2CInit(void)
{
    GPIO_InitTypeDef GPIO_InitStructure = {0};

    GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_6;
    GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
}


uint8_t E2PROM_Read(uint8_t addr)
{
	uint8_t val;
	I2CStart();
	I2CSendByte(0xA0);
	I2CWaitAck();
	I2CSendByte(addr);
	I2CWaitAck();
	//I2CStop();
	
	I2CStart();
	I2CSendByte(0xA1);
	I2CWaitAck();
	val = I2CReceiveByte();
	I2CWaitAck();
	I2CStop();
	
	return val;
}

void E2PROM_Write(uint8_t addr,uint8_t data)
{
	I2CStart();
	I2CSendByte(0xA0);
	I2CWaitAck();
	
	I2CSendByte(addr);
	I2CWaitAck();
	
	I2CSendByte(data);
	I2CWaitAck();
	I2CStop();
}

key.c
#include "key.h"
struct Key key[4] = {0,0,0,0};

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Instance==TIM2)
	{
		key[0].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_0);
		key[1].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_1);
		key[2].key_gpio = HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_2);
		key[3].key_gpio = HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0);
		for(int i = 0;i<=3;i++)
		{
			switch(key[i].key_status)
			{
				case 0:
				{
					if(key[i].key_gpio==0)
					{
						key[i].key_status = 1;
					}
				}
				break;
				case 1:
				{
					if(key[i].key_gpio==0)
					{
						key[i].key_status = 2;
						key[i].key_flag = 1;
					}
					else
					{
						key[i].key_status = 0;
					}
				}
				break;
				case 2:
				{
					if(key[i].key_gpio==1)
					{
						key[i].key_status = 0;
					}
				
				}
			}
		}
	}

}

led.c
#include "led.h"

uint32_t led1times,led2times,led3times;
uint8_t led1status=0,led2status=0,led3status=0;
uint8_t led2flag= 0,led3flag=0;
void LED_display(uint8_t led)
{
	HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET);
	HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
	HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
	HAL_GPIO_WritePin(GPIOC,led<<8,GPIO_PIN_RESET);
	HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET);
	HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET);
}

注意i2c再写数据时注意要间隔5ms以上要不然会数据异常

myadc.c
#include "myadc.h"

uint32_t adctimes = 0;
float k = 100/(3.3f);//Kֵ 
uint32_t height;
float adcval;
uint8_t level;
unsigned char min=30,med=50,max=70;
float get_Adc(ADC_HandleTypeDef *hadc){
   int val = 0.0f;
   for(int i = 0; i < 5; i++)
   {
      HAL_ADC_Start(hadc);
      HAL_ADC_PollForConversion(hadc, 100); // 等待转换完成
      val += HAL_ADC_GetValue(hadc);
      HAL_ADC_Stop(hadc); // 停止ADC转换
   }
   return val * 3.3f / 4096.0f / 5.0f; // 计算平均电压值
}



usart2.c
#include "usart2.h"

uint8_t OneData;
uint8_t rxflag;

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
	if(huart->Instance==USART1)
	{
		rxflag = 1;
		HAL_UART_Receive_IT(huart,&OneData,1);
	}
	
}


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/369230.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

layui-实现上下表,父子表单选加载事件

layui-实现上下表&#xff0c;父子表单选加载事件 代码HTML代码表格数据加载点击主表行&#xff0c;加载子表数据 实现效果图 代码 主子表&#xff0c;实现点击主表的单元格实现选中主表&#xff0c;并加载子表 HTML代码 //主表 <table class"layui-hide" id&q…

日志追踪-Tracing

1. 前言 分布式链路跟踪中有两个重要的概念&#xff1a;跟踪&#xff08;trace&#xff09;和 跨度&#xff08; span)。trace 是请求在分布式系统中的整个链路视图&#xff0c;span 则代表整个链路中不同服务内部的视图&#xff0c;span 组合在一起就是整个 trace 的视图在整个…

中科星图——Sentinel-1_SAR_GRD数据集

数据名称&#xff1a; Sentinel-1_SAR_GRD 数据来源&#xff1a; Copernicus 时空范围&#xff1a; 2022年8月-2023年2月 空间范围&#xff1a; 全国 数据简介&#xff1a; 哨兵1号&#xff08;Sentinel-1&#xff09;卫星是欧洲航天局哥白尼计划&#xff08;GMES&…

全球降水数据产品介绍

一、数据基本概况 降水数据在气象学、水文学、农业、生态学等领域有着广泛的用途。以下是一些降水数据的主要用途&#xff1a; 气象预报和监测&#xff1a; 降水数据是气象预报的重要组成部分&#xff0c;对预测天气、气候和自然灾害&#xff08;如暴雨、洪水&#xff09;至关…

day38 斐波那契数 爬楼梯 使用最小花费爬楼梯

题目1&#xff1a;509 斐波那契数 题目链接&#xff1a;509 斐波那契数 题意 斐波那契数列由0和1开始 后面的每一项数字都是前面两项数字之和 计算F(n) 动态规划 动规五部曲&#xff1a; 1&#xff09;dp数组及下标i的含义 dp[i] : 第i个斐波那契数值 i: 第i个斐…

使用 Visual Studio Code 在远程计算机上调试 PostgreSQL

使用 Visual Studio Code 在远程计算机上调试 PostgreSQL 1. 概述 PostgreSQL 是一个功能强大的开源关系数据库管理系统&#xff0c;适用于各种应用程序。在开发过程中&#xff0c;调试 PostgreSQL 对于识别和解决问题至关重要。在本博客中&#xff0c;我们将手把手教你使用客…

【考研408】操作系统笔记

文章目录 [toc] 计算机系统概述操作系统的基本概念操作系统的概念和特征操作系统的目标和功能&#xff08;**处理器管理、存储器管理、设备管理、文件管理、向用户提供接口、扩充机器**&#xff09; 操作系统的发展与分类操作系统的运行环境操作系统的运行机制 操作系统的体系结…

Node.js-1

Node.js 简介 定义&#xff1a;Node.js 是一个跨平台 JavaScript 运行环境&#xff0c;使开发者可以搭建服务器端的 JavaScript 应用程序 为什么 Node.js 能执行 JS 代码&#xff1a; Chrome 浏览器能执行 JS 代码&#xff0c;依靠的是内核中的 V8引擎&#xff08;即&#x…

【ELK】logstash快速入门

1.概述 1.1.什么是logstash&#xff1f; 之前我们聊了es&#xff0c;并且用docker搭建了一个eskibana的环境。es目前最普遍的用法是用来存储日志的&#xff0c;然后结合kibana对日志做一些可视化的工作。既然要收集日志&#xff0c;就面临着一个问题&#xff1a; 各个系统的…

Linux下新建用户

新建用户 sudo adduser -m username添加密码 sudo passwd username设置权限 sudo vi /etc/sudoers在user privilege这一行&#xff0c;仿照root&#xff0c;另起一行&#xff0c;添加上 设置命令解释器 sudo vi /etc/passwd找到新建用户名&#xff0c;将sh改为bash vi中…

基于知识图谱的少样本和零样本学习综述

论文题目&#xff1a;Zero-Shot and Few-Shot Learning With Knowledge Graphs: A Comprehensive Survey 本文作者&#xff1a;陈矫彦&#xff08;曼彻斯特大学&牛津大学&#xff09;、耿玉霞&#xff08;浙江大学&#xff09;、陈卓&#xff08;浙江大学&#xff09;、Je…

快速理解复杂系统组成学习内容整合

目录 一、复杂系统组成 二、接入系统 (Access System) 三、应用系统 (Application System) 四、基础平台 (Foundation Platform) 五、中间件 (Abundant External Middleware) 六、支撑系统 (Supporting System) 参考文章 一、复杂系统组成 复杂系统是由多个相互关联、相…

【Java程序设计】【C00245】基于Springboot的家政服务管理平台(有论文)

基于Springboot的家政服务管理平台&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的家政服务管理平台 本系统分为前台模块、管理员功能模块、用户功能模块以及服务人员功能模块。 前台模块&#xff1a;系统首页的…

【云原生】docker安全与https加密的超文本传输协议CA证书生成

目录 一、docker安全 二、http与https的区别 三、为什么要使用 SSL 证书&#xff1f; 四、https证书认证的过程 https单向认证的访问流程 https双向认证的访问流程 五、如何获取证书&#xff1f; 六、实操获取证书并验证 1、通过阿里云获取证书 2、通过mkcert获取证书…

【Vue3实战】TypeScript前端实战基础

【Vue3实战】TypeScript前端实战基础 前言一、TypeScript的由来二、什么是TypeScript?三、静态类型检查四、类型注解和类型推导五、可选参数和默认参数六、接口和类型别名接口接口的可选设置类型 七、类和继承接口的继承交叉类型模拟继承 八、泛型什么是泛型泛型接口泛型函数泛…

深度学习驱动下的自然语言处理进展及其应用前景

文章目录 每日一句正能量前言技术进步应用场景挑战与前景自然语言处理技术当前面临的挑战未来的发展趋势和前景 伦理和社会影响实践经验后记 每日一句正能量 一个人若想拥有聪明才智&#xff0c;便需要不断地学习积累。 前言 自然语言处理&#xff08;NLP&#xff09;是一项正…

LeetCode---382周赛---位运算

题目列表 3019. 按键变更的次数 3020. 子集中元素的最大数量 3021. Alice 和 Bob 玩鲜花游戏 3022. 给定操作次数内使剩余元素的或值最小 一、按键变更的次数 题目简单明了&#xff0c;就是看相邻的两个字母是否相等&#xff0c;不区分大小写&#xff0c;直接遍历统计即可…

Linux下tar命令详解

tar #归档命令 格式 • Tar -参数 [args]..... 参数&#xff1a; 必选参数&#xff1a; 辅助参数&#xff1a; 额外参数&#xff1a; # 打包时排除某个文件 tar cf 文件名.tar --exclude路径/文件 路径 注&#xff1a;此处的路径前后需要保持保持一致&#xff0c;统一…

【Langchain+Streamlit】打造一个旅游问答AI

利用LangchainStreamlit打造一个交互简单的旅游问答AI机器人&#xff0c;如果你有openai账号,可以按照如下的网址直接体验&#xff0c;如果你没有的话可以站内私信博主要一下临时key体验一下&#xff1a; 产品使用传送门—— http://101.33.225.241:8501/ 这里有演示效果和代码…

AIGC专题:2024年生成式人工智能预测报告(英文版)

今天分享的是AIGC系列深度研究报告&#xff1a;《AIGC专题&#xff1a;2024年生成式人工智能预测报告&#xff08;英文版&#xff09;》。 &#xff08;报告出品方&#xff1a;CBINSIGHTS&#xff09; 报告共计&#xff1a;112页 我们没有足够的高质量数据来训练LLM 研究人员…