RT-Thread线程管理(使用篇)


layout: post
title: “RT-Thread线程管理”
date: 2024-1-26 15:39:08 +0800
tags: RT-Thread


线程管理(使用篇)

之后会做源码分析

线程是任务的载体,是RTT中最基本的调度单位。

线程执行时的运行环境称为上下文,具体来说就是各个变量和数据,包括所有的寄存器变量、堆栈、内存信息等。

管理的特点

RT-Thread 线程管理的主要功能是对线程进行管理和调度,系统中总共存在两类线程,分别是系统线程和用户线程

这两类线程都会从内核对象容器中分配线程对象,当线程被删除时,也会被从对象容器中删除。

RT-Thread 的线程调度器是抢占式的,主要的工作就是从就绪线程列表中查找最高优先级线程,保证最高优先级的线程能够被运行,最高优先级的任务一旦就绪,总能得到 CPU 的使用权。

struct rt_thread
{
    /* rt object */
    char        name[RT_NAME_MAX];                      /**< the name of thread 名字*/
    rt_uint8_t  type;                                   /**< type of object 类型*/
    rt_uint8_t  flags;                                  /**< thread's flags 标志位*/

#ifdef RT_USING_MODULE
    void       *module_id;                              /**< id of application module */
#endif

    rt_list_t   list;                                   /**< the object list 对象列表*/
    rt_list_t   tlist;                                  /**< the thread list 线程列表*/

    /* stack point and entry 栈对应的指针*/
    void       *sp;                                     /**< stack point 栈指针*/
    void       *entry;                                  /**< entry 入口函数*/
    void       *parameter;                              /**< parameter 参数*/
    void       *stack_addr;                             /**< stack address 栈的地址*/
    rt_uint32_t stack_size;                             /**< stack size 栈的大小*/

    /* error code */
    rt_err_t    error;                                  /**< error code 线程错误代码*/

    rt_uint8_t  stat;                                   /**< thread status 线程状态*/
//对称多处理器, M3只有一个内核, 不会用到
#ifdef RT_USING_SMP
    rt_uint8_t  bind_cpu;                               /**< thread is bind to cpu */
    rt_uint8_t  oncpu;                                  /**< process on cpu` */

    rt_uint16_t scheduler_lock_nest;                    /**< scheduler lock count */
    rt_uint16_t cpus_lock_nest;                         /**< cpus lock count */
    rt_uint16_t critical_lock_nest;                     /**< critical lock count */
#endif /*RT_USING_SMP*/

    /* priority */
    rt_uint8_t  current_priority;                    /**< current priority 当前的优先级*/
    rt_uint8_t  init_priority;                       /**< initialized priority 初始化时候的优先级(在优先级继承的时候使用)*/
#if RT_THREAD_PRIORITY_MAX > 32
    rt_uint8_t  number;
    rt_uint8_t  high_mask;
#endif
    rt_uint32_t number_mask;

#if defined(RT_USING_EVENT)
    /* thread event */
    rt_uint32_t event_set;
    rt_uint8_t  event_info;
#endif

#if defined(RT_USING_SIGNALS)
    rt_sigset_t     sig_pending;                        /**< the pending signals */
    rt_sigset_t     sig_mask;                           /**< the mask bits of signal */

#ifndef RT_USING_SMP
    void            *sig_ret;                           /**< the return stack pointer from signal */
#endif
    rt_sighandler_t *sig_vectors;                       /**< vectors of signal handler */
    void            *si_list;                           /**< the signal infor list */
#endif

    rt_ubase_t  init_tick;                              /**< thread's initialized tick 线程初始化计数值*/
    rt_ubase_t  remaining_tick;                         /**< remaining tick 当前剩余的计数值*/

    struct rt_timer thread_timer;                       /**< built-in thread timer 一个内置的定时器*/

    void (*cleanup)(struct rt_thread *tid);             /**< cleanup function when thread exit 退出回调函数*/

    /* light weight process if present */
#ifdef RT_USING_LWP
    void        *lwp;
#endif

    rt_uint32_t user_data;                             /**< private user data beyond this thread */
};
typedef struct rt_thread *rt_thread_t;

cleanup函数指针指向的函数,会在线程退出的时候,被idle线程回调一次,执行用户设置的清理现场等工作。

成员user_data可由用户挂接一些数据信息到线程控制块中,以提供类似线程私有数据的实现

线程属性

线程状态

image-20240127164313400

优先级

最大支持 256 个线程优先级 (0~255),数值越小的优先级越高,0 为最高优先级。在一些资源比较紧张的系统中,可以根据实际情况选择只支持 8 个或 32 个优先级的系统配置

对于 ARM Cortex-M系列,普遍采用 32 个优先级。最低优先级默认分配给空闲线程使用,用户一般不使用。

时间片

每个线程都有时间片这个参数,但时间片仅对优先级相同的就绪态线程有效。

**注意: **线程里面不要有死循环, 否则低优先级任务不会吧执行到

错误码

/* RT-Thread error code definitions */
#define RT_EOK                          0               /**< There is no error */
#define RT_ERROR                        1               /**< 普通错误 */
#define RT_ETIMEOUT                     2               /**< Timed out */
#define RT_EFULL                        3               /**< 资源已满 */
#define RT_EEMPTY                       4               /**< 无资源 */
#define RT_ENOMEM                       5               /**< No memory */
#define RT_ENOSYS                       6               /**< No system */
#define RT_EBUSY                        7               /**< Busy */
#define RT_EIO                          8               /**< IO error */
#define RT_EINTR                        9               /**< Interrupted system call */
#define RT_EINVAL                       10              /**< 非法参数 */

状态切换

image-20240127165225864

image-20240127165707366

image-20240127165835227

系统线程

在RT-Thread内核中的系统线程有空闲线程和主线程。

空闲线程

系统创建的最低优先级的线程,线程状态永远为就绪态。当系统中无其他就绪线程存在时,调度器将调度到空闲线程,它通常是一个死循环,且永远不能被挂起。

空闲线程在RT-Thread也有着它的特殊用途:

线程运行完毕,系统将自动删除线程:自动执行rt_thread_exit()函数,先将该线程从系统就绪队列中删除,再将该线程的状态更改为关闭状态,不再参与系统调度,然后挂入rt_thread_defunct僵尸队列(资源未回收、处于关闭状态的线程队列)中,最后空闲线程会回收被删除线程的资源。

也提供了接口来运行用户设置的钩子函数,在空闲线程运行时会调用该钩子函数,适合钩入功耗管理、看门狗喂狗等工作。

主线程

入口函数为main_thread_entry()

回在这个线程里面初始化软件, 然后调用用户的main函数

实际操作API

线程相关的操作包括:创建/初始化、启动、运行、删除/脱离。

动态线程是系统自动从动态内存堆上分配栈空间与线程句柄(初始化 heap 之后才能使用 create 创建动态线程),静态线程是由用户分配栈空间与线程句柄。

image-20240127173904171

create和delete是动态的

init和detach是静态的

创建

/**动态
 * This function will create a thread object and allocate thread object memory
 * and stack.
 *
 * @param name the name of thread, which shall be unique名字
 * @param entry the entry function of thread一个函数指针
 * @param parameter the parameter of thread enter function一个参数
 * @param stack_size the size of thread stack栈的大小
 * @param priority the priority of thread优先级
 * @param tick the time slice if there are same priority thread时间片
 *
 * @return the created thread object
 */
rt_thread_t rt_thread_create(const char *name,
                             void (*entry)(void *parameter),
                             void       *parameter,
                             rt_uint32_t stack_size,
                             rt_uint8_t  priority,
                             rt_uint32_t tick)
/**静态
 * This function will initialize a thread, normally it's used to initialize a
 * static thread object.
 *
 * @param thread the static thread object
 * @param name the name of thread, which shall be unique
 * @param entry the entry function of thread
 * @param parameter the parameter of thread enter function
 * @param stack_start the start address of thread stack
 * @param stack_size the size of thread stack
 * @param priority the priority of thread
 * @param tick the time slice if there are same priority thread
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_thread_init(struct rt_thread *thread,
                        const char       *name,
                        void (*entry)(void *parameter),
                        void             *parameter,
                        void             *stack_start,
                        rt_uint32_t       stack_size,
                        rt_uint8_t        priority,
                        rt_uint32_t       tick)

删除

/**动态的时候使用的函数
 * This function will delete a thread. The thread object will be removed from
 * thread queue and deleted from system object management in the idle thread.
 *
 * @param thread the thread to be deleted
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_thread_delete(rt_thread_t thread)
/**静态的时候使用的函数
 * This function will detach a thread. The thread object will be removed from
 * thread queue and detached/deleted from system object management.
 *
 * @param thread the thread to be deleted
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_thread_detach(rt_thread_t thread)

会在运行结束以后自动调用, 不建议使用

启动

/**开始可以被执行
 * This function will start a thread and put it to system ready queue
 *
 * @param thread the thread to be started
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_thread_startup(rt_thread_t thread)

获取当前在运行的任务句柄

/**
 * This function will return self thread object
 *
 * @return the self thread object
 */
rt_thread_t rt_thread_self(void)
{
    return rt_current_thread;
}

可以用于在多个任务执行同一段代码的时候区分

让出处理器

/**
 * This function will let current thread yield processor, and scheduler will
 * choose a highest thread to run. After yield processor, the current thread
 * is still in READY state.
 *
 * @return RT_EOK
 */
rt_err_t rt_thread_yield(void)

在让出CPU以后, 当前的线程依旧是ready状态, 会执行相同优先级的任务

休眠

/**
 * This function will let current thread sleep for some ticks.
 *
 * @param tick the sleep ticks 系统的时钟数
 *
 * @return RT_EOK
 */
rt_err_t rt_thread_sleep(rt_tick_t tick)
/**
 * This function will let current thread delay for some ticks.
 *
 * @param tick the delay ticks
 *
 * @return RT_EOK
 */
rt_err_t rt_thread_delay(rt_tick_t tick)
{
    return rt_thread_sleep(tick);
}
/**
 * This function will let current thread delay for some milliseconds.
 *
 * @param ms the delay ms time使用毫秒级别延时
 *
 * @return RT_EOK
 */
rt_err_t rt_thread_mdelay(rt_int32_t ms)

控制

/**
 * This function will control thread behaviors according to control command.
 *
 * @param thread the specified thread to be controlled
 * @param cmd the control command, which includes
 *  RT_THREAD_CTRL_CHANGE_PRIORITY for changing priority level of thread;控制优先级
 *  RT_THREAD_CTRL_STARTUP for starting a thread;启动一个线程
 *  RT_THREAD_CTRL_CLOSE for delete a thread;删除一个线程
 *  RT_THREAD_CTRL_BIND_CPU for bind the thread to a CPU.把一个线程绑定在某一个CPU
 * @param arg the argument of control command
 *
 * @return RT_EOK
 */
rt_err_t rt_thread_control(rt_thread_t thread, int cmd, void *arg)

设置以及删除idle线程的hook函数

/**
 * @ingroup Hook
 * This function sets a hook function to idle thread loop. When the system performs
 * idle loop, this hook function should be invoked.
 *
 * @param hook the specified hook function
 *
 * @return RT_EOK: set OK
 *         -RT_EFULL: hook list is full
 *
 * @note the hook function must be simple and never be blocked or suspend.
 */
rt_err_t rt_thread_idle_sethook(void (*hook)(void))
/**
 * delete the idle hook on hook list
 *
 * @param hook the specified hook function
 *
 * @return RT_EOK: delete OK
 *         -RT_ENOSYS: hook was not found
 */
rt_err_t rt_thread_idle_delhook(void (*hook)(void))

空闲线程是一个线程状态永远为就绪态的线程,因此设置的钩子函数必须保证空闲线程在任何时刻都不会处于挂起状态,例如 rt_thread_delay(),rt_sem_take() 等可能会导致线程挂起的函数都不能使用。

设置调度器hook函数

用户可能会想知道在一个时刻发生了什么样的线程切换,可以通过调用下面的函数接口设置一个相应的钩子函数。

/**
 * This function will set a hook function, which will be invoked when thread
 * switch happens.
 *
 * @param hook the hook function, 可以获取线程来的位置以及下一个线程
 */
void rt_scheduler_sethook(void (*hook)(struct rt_thread *from, struct rt_thread *to))

实际使用

void test_thread(void * parameter){
    int16_t i=0;
    while(1)
    {
        rt_kprintf("test threader\n");
        rt_thread_mdelay(1000);
        if(i++>10)
            break;
    }
}

int main(void)
{
    test_prt = rt_thread_create("test", test_thread, RT_NULL, 300, 20, 20);
    if(test_prt != RT_NULL)
    {
        LOG_D("malloc test thread successed\n");
    }else{
        LOG_E("malloc test thread fail\n");
    }
    rt_thread_startup(test_prt);

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/368576.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

stable diffusion学习笔记——高清修复

ai画图中通常存在以下痛点&#xff1a; 受限于本地设备的性能&#xff08;主要是显卡显存&#xff09;&#xff0c;无法跑出分辨率较高的图片。生图的时候分辨率一调大就爆显存。即便显存足够。目前主流的模型大多基于SD1.0和SD1.5&#xff0c;这些模型在训练的时候通常使用小…

【Java】IoC五大注解和@Bean注解

1、用于类的五大注解 Controller 控制器存储 Service 服务存储 Component 组件存储 Configuration 配置存储 Repository 仓库存储 从功能上看&#xff0c;除了Controller&#xff0c;其他效果一样&#xff1a;接口的入口必须为Controller ​几者的关系如下 2、用于方法的…

Leetcode92:反转链表II(区间反转链表)

一、题目 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1a…

一篇文章解决你的无线AP选型难题:从入门到精通

无线网络覆盖项目中&#xff0c;无线AP的合理选型和部署非常重要。今天给大家安排。 这篇文章&#xff0c;给你总结了6类典型的无线组网场所&#xff0c;针对每种场景的特点&#xff0c;给出相应的设备选型和部署的方案&#xff0c;同时整理了一些部署无线AP过程中容易忽略的细…

阿里云服务器一键部署幻兽帕鲁专属服务器,图形化可视化修改游戏参数是如此简单!

幻兽帕鲁这款游戏最近很火&#xff0c;在线玩家太多了&#xff0c;官方服务器也是承压巨大&#xff0c;很多玩家现在都是搭建自己的专属幻兽帕鲁服务器来玩。搭建教程现在也是越来越简单了&#xff0c;可以说是真正的零基础&#xff0c;一看就会&#xff0c;并且开箱即玩&#…

GMT绘图笔记

(1)图框设置。在利用GMT绘制图件时&#xff0c;需要设置边框的类型&#xff0c;字体的大小&#xff0c;标记距离边框的距离。主要涉及的参数有&#xff1a; gmt set MAP_FRAME_TYPE plain/fancy 可以调整边框为火车轨道或者线段。 (2)调整图框的粗细&#xff1a;主要是包含有…

浅析Redis③:命令处理之数据返回Client(下)

写在前面 Redis作为我们日常工作中最常使用的缓存数据库&#xff0c;其重要性不言而喻&#xff0c;作为普通开发者&#xff0c;我们在日常开发中使用Redis&#xff0c;主要聚焦于Redis的基层数据结构的命令使用&#xff0c;很少会有人对Redis的内部实现机制进行了解&#xff0c…

Python算法题集_合并区间

本文为Python算法题集之一的代码示例 题目56&#xff1a;合并区间 说明&#xff1a;以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需…

leetcode 1.两数之和(C++)DAY1(待补充哈希表法)

文章目录 1.题目描述示例提示 2.解答思路3.实现代码结果4.总结 1.题目描述 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&…

假期2.3

第二章 引用内联重载 一&#xff0e;选择题-* 1、适宜采用inline定义函数情况是&#xff08;C&#xff09; A. 函数体含有循环语句 B. 函数体含有递归语句‘、考科一 ’ C. 函数代码少、频繁调用 D. 函数代码多、不常调用 2、假定一个函数为A(int i4, int j0) {;}, 则执行“A …

Datawhale组队学习 Task10 环境影响

第12章 环境影响 在本章中&#xff0c;首先提出一个问题&#xff1a;大语言模型对环境的影响是什么&#xff1f; 这里给出的一个答案是&#xff1a;气候变化 一方面&#xff0c;我们都听说过气候变化的严重影响(文章1、文章2)&#xff1a; 我们已经比工业革命前的水平高出1.…

LeetCode热题HOT100【栈的压入、弹出序列】

&#x1f525;LeetCode热题HOT100【栈的压入、弹出序列】 1. 题目来源2.题目 1. 题目来源 来自LeetCode热题HOT100 https://leetcode.cn/studyplan/top-100-liked/?isDarktrue 2.题目 题目地址 Leetcode地址 3.Stack 在Java中&#xff0c;Stack 是一个基于后进先出&#…

玩美移动为花西子海外官网打造AR虚拟试妆决方案

全球领先的增强现实&#xff08;AR&#xff09;及人工智能&#xff08;AI&#xff09;美妆科技领导者及玩美系列APP开发商——玩美移动&#xff08;纽交所代码&#xff1a;PERF&#xff09;于近日宣布携手知名美妆品牌花西子&#xff0c;在其线海外官方网页提供多项彩妆虚拟试妆…

TanDEM-X30米DEM数据介绍

一、背景 之前介绍了Copernicus 30米DEM以及Alos 30米DEM数据的详细介绍以及接入到Cesium中的效果展示&#xff0c;有遥感专业工作者对比了Copernnicus、ALOA、ASTER、NASA、SRTM这几家30米DEM数据&#xff0c;得出了Copernicus 30米DEM数据是最好的全球级30米DEM数据&#xf…

Java8 中文指南(一)

Java8 中文指南&#xff08;一&#xff09; 文章目录 Java8 中文指南&#xff08;一&#xff09;《Java8 指南》中文翻译接口的默认方法(Default Methods for Interfaces)Lambda 表达式(Lambda expressions)函数式接口(Functional Interfaces)方法和构造函数引用(Method and Co…

Unity 图片不改变比例适配屏幕

Unity 图片不改变比例适配屏幕 前言项目场景布置代码编写添加并设置脚本效果 前言 遇到一个要让图片适应相机大小&#xff0c;填满屏幕&#xff0c;但不改变图片比例的需求&#xff0c;记录一下。 项目 场景布置 代码编写 创建AdaptiveImageBackground脚本 using System.C…

QT 应用中集成 Sentry

QT 应用中集成 Sentry QT应用中集成 SentrySentry SDK for C/C注册 Sentry 账号QT 应用中集成 Sentry触发 Crash 上报 QT应用中集成 Sentry Sentry 是一个开源的错误监控和日志记录平台&#xff0c;旨在帮助开发团队实时捕获、跟踪和解决软件应用程序中的错误和异常。它提供了…

Python flask 表单详解

文章目录 1 概述1.1 request 对象 2 示例2.1 目录结构2.2 student.html2.3 result.html2.4 app.py 1 概述 1.1 request 对象 作用&#xff1a;来自客户端网页的数据作为全局请求对象发送到服务器request 对象的重要属性如下&#xff1a; 属性解释form字典对象&#xff0c;包…

如何批量获取当前文件夹下的文件名

最近&#xff0c;在和网友交流时&#xff0c;对方推荐了一个视频&#xff0c;我打开一看&#xff0c;是一个手工获取当前目录下所有文件名的手机视频。用的方法是在win11中复制所有文件的路径&#xff0c;然后粘贴到Excel当中&#xff0c;通过查找替换和分列的方法&#xff0c;…

EasyX图形库学习(二)

目录 一、文字绘制函数 settextstyle 设置当前文字样式。 outtextxy 在指定位置输出字符串。 ​编辑 但如果直接使用,可能有以下报错&#xff1a; 三种解决方案&#xff1a; 将一个int类型的分数,输出到图形界面上 如果直接使用&#xff1a; 会把score输入进去根据A…