基于YOLOv8深度学习的水稻叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:水稻叶片病害智能诊断系统可以帮助农民和专业人士准确、快速地识别水稻叶片上的病害,从而采取相应的防治措施,提高水稻产量和质量,减少经济损失。本文基于YOLOv8深度学习框架,通过5932张图片,训练了一个水稻叶片病害智能诊断的识别模型,可用于识别4种不同的水稻病害类型。并基于此模型开发了一款带UI界面的水稻叶片病害智能诊断系统,可用于实时识别场景中的水稻叶片病害类型,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

水稻叶片病害智能诊断系统可以帮助农民和专业人士准确、快速地识别水稻叶片上的病害,从而采取相应的防治措施,提高水稻产量和质量,减少经济损失。

该系统的具体应用场景包括:
农田病害监测:系统可安装在无人机或机器人上,通过航拍或移动检测,在大范围的农田中快速发现水稻叶片病害,帮助农民针对性地进行病虫害防治。
实时诊断:系统能够在实时环境中对水稻叶片进行病害诊断,快速判断病害类型,为及时采取措施提供准确的参考,避免病害的扩散和加重。
病害样本库建设:系统可以收集和保存大量水稻叶片病害样本的图像和诊断结果,建立起完善的病害样本库,为后续的学习与诊断提供有力支持。
多种病害检测:系统不仅可以识别水稻叶片常见的病害如纹枯病、白叶枯病等,也可以适应新出现的水稻病害,提供更加全面的病害检测能力。
综上所述,水稻叶片病害智能诊断系统在现代农业生产中具有重要意义,可以提高农作物的生产效益和质量,为农民和专业人士提供精确的病害诊断和预防控制方法。

博主通过搜集水稻叶片病害的相关数据图片并整理,根据YOLOv8的深度学习技术训练识别模型,并基于python与Pyqt5开发了一款界面简洁的水稻叶片病害智能诊断系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行4种不同水稻叶片病害的类型识别,分别为:['白叶枯病', '稻瘟病', '褐斑病', '枯草病'];
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述

批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的水稻叶片病害数据集共包含5932张图片,分为4个病害类别,分别是['白叶枯病', '稻瘟病', '褐斑病', '枯草病']。部分数据集及类别信息如下:
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO

# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/Data', epochs=300, batch=4)
    # results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
通过accuracy_top1图片准确率曲线图我们可以发现,该模型在验证集的准确率约为1.0,结果还是很不错的。
在这里插入图片描述

在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/BACTERAILBLIGHT3_002.jpg"

# 加载模型
model = YOLO(path, task='classify')

# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款水稻叶片病害智能诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的水稻叶片病害智能诊断系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/368061.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

openGauss学习笔记-213 openGauss 性能调优-总体调优思路

文章目录 openGauss学习笔记-213 openGauss 性能调优-总体调优思路213.1 调优思路概述213.2 调优流程 openGauss学习笔记-213 openGauss 性能调优-总体调优思路 213.1 调优思路概述 openGauss的总体性能调优思路为性能瓶颈点分析、关键参数调整以及SQL调优。在调优过程中&…

python使用两个栈实现队列

这里主要是使用两个栈来实现一个队列,并实现队列的入队和出队函数。 对于一个单词hello,如果正常情况下按照队列中先进先出的特点,会按照hello的顺序入队,同样也会按照hello的顺序出队。 添加图片注释,不超过 140 字(可选) 因此如果想要利用两个栈来形成队列,就要将后…

基于SpringBoot+Vue的高校在线答疑管理系统

末尾获取源码作者介绍:大家好,我是墨韵,本人4年开发经验,专注定制项目开发 更多项目:CSDN主页YAML墨韵 学如逆水行舟,不进则退。学习如赶路,不能慢一步。 目录 一、项目简介 二、开发技术与环…

前端学习笔记 | 响应式网页+Boostrap

一、响应式网页 一套代码适应多端 1、媒体查询media(条件){css} max-width 小于等于max-width生效min-width 【案例】左侧隐藏 因为CSS的层叠性,书写顺序:max-width从大到小;min-width从小到大。 【媒体查询完整写法】 在html中link用于不同…

JSP和JSTL板块:第二节 JSP的指令和动作 来自【汤米尼克的JAVAEE全套教程专栏】

JSP和JSTL板块:第二节 JSP的指令和动作 一、page指令:页面设置(1)导入包:import属性(2)设定字符集:pageEncoding属性(3)设定错误页面:errorPage/i…

Docker上安装配置tomcat

目录 1. 拉取镜像 2. 创建运行镜像 3. 查看是否创建成功 ps:如果出现404错误 tomcat目录结构 1. 拉取镜像 这里使用 tomcat:8.5.40 版本作为安装 docker pull tomcat:8.5.40 2. 创建运行镜像 docker run -d --name tomcat -p 8080:8080 \--privilegedtrue …

day07-CSS高级

01-定位 作用:灵活的改变盒子在网页中的位置 实现: 1.定位模式:position 2.边偏移:设置盒子的位置 left right top bottom 相对定位 position: relative 特点: 不脱标,占用自己原来位置 显示模…

题目:有1,2,3,4共四个数字,能组成多少个不相同而且无重复数字的三位数有多少个,都是多少?lua

这是作者的思路, 创建三个表, 第一个数是从四个数遍历, 第二个是数剔除第一个数进行遍历 第三个是剔除第一第二个数遍历 脚本如下 local a{1,2, 3, 4} local b{} local c{} local d{} local function copy(tbl) local ctbl{} for k,v in…

【JS】基于node-media-server搭建流媒体服务器示例

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍基于node-media-server搭建流媒体服务器示例。 学其所用,用其所学。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下&…

【机器学习】常见算法详解第2篇:KNN之kd树介绍(已分享,附代码)

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用&#xff0…

Windows Server安装部署FTP服务

文章目录 建立FTP目录通过IIS在Server上安装FTP服务配置FTP站点配置身份验证和授权测试FTP服务FTP软件推荐FTP客户端软件FTP服务器软件适合Ubuntu的FTP软件 推荐阅读 在Windows操作系统中安装和配置FTP服务,主要是基于Internet Information Services (IIS)的FTP服务…

ABAP 笔记--内表结构不一致,无法更新数据库MODIFY和UPDATE

目录 ABAP 笔记内表结构不一致,无法更新数据库MODIFY和UPDATE ABAP 笔记 内表结构不一致,无法更新数据库 MODIFY和UPDATE 如果是使用MODIFY或者UPDATE

【2024.2.3练习】修剪灌木

题目描述 题目分析 数学思维题。首先容易看出从左往右树的最大高度是对称的,不妨只看前棵树,由于此时右边的灌木数量不少于左边灌木数量,所以要想长到最高一定是修剪到最右边再剪回来,设该树右边共有棵树,那么它能长到…

python基于django的公交线路查询系统mf383

1.个人信息的管理:对用户名,密码的增加、删除等 2.线路信息的管理:对线路的增加、修改、删除等 3.站点信息的管理:对站点的增加、修改、删除等 4.车次信息的管理:对车次的增加、修改、删除等 5.线路查询、站点查询 …

JAVASE进阶:Collection高级(1)——源码分析contains方法、lambda遍历集合

👨‍🎓作者简介:一位大四、研0学生,正在努力准备大四暑假的实习 🌌上期文章:JAVASE进阶:函数式编程——lambda表达式替代匿名内部类 📚订阅专栏:JAVASE进阶 希望文章对你…

2024 高级前端面试题之 HTTP模块 「精选篇」

该内容主要整理关于 HTTP模块 的相关面试题,其他内容面试题请移步至 「最新最全的前端面试题集锦」 查看。 HTTP模块精选篇 1. HTTP 报文的组成部分2. 常见状态码3. 从输入URL到呈现页面过程3.1 简洁3.2 详细 4. TCP、UDP相关5. HTTP2相关6. https相关7. WebSocket的…

docker-compose Install HertzBeat

HertzBeat前言 HertzBeat 赫兹跳动 是一个拥有强大自定义监控能力,高性能集群,兼容 Prometheus,无需 Agent 的开源实时监控告警系统。 易用友好的开源实时监控告警系统,无需Agent,高性能集群,兼容Prometheus,强大自定义监控能力。​ 集 监控+告警+通知 为一体,支持对…

ToF传感器在移动机器人中的作用

原创 | 文 BFT机器人 在日新月异的机器人技术领域,技术的无缝整合正引领着人类与机器交互方式的革新潮流。ToF传感器作为变革性创新的一个例子,对移动机器人更好地感知周围环境起到了决定性的作用。 ToF传感器与激光雷达技术在创建深度图方面有着异曲同…

SpringBoot实战2

目录 1.如何返回两个类型的数据?User和Booth 2.如何使用MyBatis遍历一个数组进行查询? 3.前端要的数据太多太杂,我们拼接多个List,前端找数据困难,浪费时间。因此我们进行三表联表查询。 1.首先创建一个vo包&#x…

c++ STL less 的视角

c less 函数在不同的地方感觉所起的作用是不一样的, 这中间原因是 less 的视角不一样, 下面尝试给出解释下, 方便记忆 1、 左右视角 符合 排序sort less(value, element) less 表示一种 “符合关系“, 表示sort 后…