IP协议【图解TCP/IP(笔记九)】

文章目录

    • IP即网际协议
      • IP相当于OSI参考模型的第3层
      • 网络层与数据链路层的关系
    • IP基础知识
      • IP地址属于网络层地址
      • 路由控制
        • ■ 发送数据至最终目标地址
        • ■ 路由控制表
      • 数据链路的抽象化
      • IP属于面向无连接型

IP即网际协议

TCP/IP的心脏是互联网层。这一层主要由IP(Internet Protocol)和ICMP(Internet Control Message Protocol)两个协议组成。

IP相当于OSI参考模型的第3层

IP(IPv4、IPv6)相当于OSI参考模型中的第3层——网络层。

网络层的主要作用是“实现终端节点之间的通信”。这种终端节点之间的通信也叫“点对点(end-to-end)通信”。

网络层的下一层——数据链路层的主要作用是在互连同一种数据链路的节点之间进行包传递。而一旦跨越多种数据链路,就需要借助网络层。网络层可以跨越不同的数据链路,即使是在不同的数据链路上也能实现两端节点之间的数据包传输。
请添加图片描述

■ 主机与节点

在互联网世界中,将那些配有IP地址的设备叫做“主机”。这里的主机可以是超大型计算机,也可以是小型计算机。
这是因为互联网在当初刚发明的时候,只能连接这类大型的设备,因此习惯上就将配有IP地址的设备称为“主机”。

然而,准确地说,主机的定义应该是指“配置有IP地址,但是不进行路由控制(是指中转分组数据包。) 的设备”。
既配有IP地址又具有路由控制能力的设备叫做“路由器”,跟主机有所区别。
而节点则是主机和路由器的统称(在IPv4的规范中,将具有路由控制功能的设备叫做“网关”,然而现在都普遍叫做路由器(或3层交换机)。) 。

网络层与数据链路层的关系

数据链路层提供直连两个设备之间的通信功能。与之相比,作为网络层的IP则负责在没有直连的两个网络之间进行通信传输。那么为什么一定需要这样的两个层次呢?它们之间的区别又是什么呢?

在此,我们以旅行为例说明这个问题。有个人要去一个很远的地方旅行,并且计划先后乘坐飞机、火车、公交车到达目的地。为此,他决定先去旅行社购买机票和火车票。

旅行社不仅为他预订好了旅途过程中所需要的机票和火车票,甚至为他制定了一个详细行程表,详细到几点几分需要乘坐飞机或火车都一目了然。

当然,机票和火车票只有特定区间内有效,当你换乘不同公司的飞机或火车时,还需要重新购票。
请添加图片描述
仔细分析一下机票和火车票,不难发现,每张票只能够在某一限定区间内移动。此处的“区间内”就如同通信网络上的数据链路。而这个区间内的出发地点和目的地点就如同某一个数据链路的源地址和目标地址等首部信息(出发地点好比源MAC地址,目标地点好比目的MAC地址。) 。整个全程的行程表的作用就相当于网络层。

如果我们只有行程表而没有车票,就无法搭乘交通工具到达目的地。反之,如果除了车票其他什么都没有,恐怕也很难到达目的地。因为你不知道该坐什么车,也不知道该在哪里换乘。因此,只有两者兼备,既有某个区间的车票又有整个旅行的行程表,才能保证到达目的地。与之类似,计算机网络中也需要数据链路层和网络层这个分层才能实现向最终目标地址的通信。

IP基础知识

IP大致分为三大作用模块,它们是IP寻址、路由(最终节点为止的转发)以及IP分包与组包。以下就这三个要点逐一介绍。

IP地址属于网络层地址

在计算机通信中,为了识别通信对端,必须要有一个类似于地址的识别码进行标识。MAC地址正是用来标识同一个链路中不同计算机的一种识别码。

作为网络层的IP,也有这种地址信息。一般叫做IP地址。IP地址用于在“连接到网络中的所有主机中识别出进行通信的目标地址”。因此,在TCP/IP通信中所有主机或路由器必须设定自己的IP地址(严格来说,要针对每块网卡至少配置一个或一个以上的IP地址。) 。请添加图片描述
不论一台主机与哪种数据链路连接,其IP地址的形式都保持不变。以太网、无线局域网、PPP等,都不会改变IP地址的形式(数据链路的MAC地址的形式不一定必须一致。) 。网络层对数据链路层的某些特性进行了抽象。数据链路的类型对IP地址形式透明,这本身就是其中抽象化中的一点。

另外,在网桥或交换集线器等物理层或数据链路层数据包转发设备中,不需要设置IP地址(在用SNMP进行网路管理时有必要设置IP地址。不指定IP则无法利用IP进行网路管理。) 。因为这些设备只负责将IP包转化为0、1比特流转发或对数据链路帧的数据部分进行转发,而不需要应对IP协议(反之,这些设备既可以在IPv4环境中使用,也可以在IPv6环境中使用。) 。

路由控制

路由控制(Routing)是指将分组数据发送到最终目标地址的功能。即使网络非常复杂,也可以通过路由控制确定到达目标地址的通路。一旦这个路由控制的运行出现异常,分组数据极有可能“迷失”,无法到达目标地址。因此,一个数据包之所以能够成功地到达最终的目标地址,全靠路由控制。
请添加图片描述

■ 发送数据至最终目标地址

Hop译为中文叫“跳”。它是指网络中的一个区间。IP包正是在网络中一个个跳间被转发。因此IP路由也叫做多跳路由。在每一个区间内决定着包在下一跳被转发的路径。
请添加图片描述

■ 一跳的范围

一跳(1 Hop)是指利用数据链路层以下分层的功能传输数据帧的一个区间。

以太网等数据链路中使用MAC地址传输数据帧。此时的一跳是指从源MAC地址到目标MAC地址之间传输帧的区间。
也就是说它是主机或路由器网卡不经其他路由器而能直接到达的相邻主机或路由器网卡之间的一个区间。
在一跳的这个区间内,电缆可以通过网桥或交换集线器相连,不会通过路由器或网关相连。

多跳路由是指路由器或主机在转发IP数据包时只指定下一个路由器或主机,而不是将到最终目标地址为止的所有通路全都指定出来。因为每一个区间(跳)在转发IP数据包时会分别指定下一跳的操作,直至包达到最终的目标地址。

以乘坐火车旅游为例具体说明。

在前面的例子中,虽然已经确定了最终的目标车站,但是一开始还是不知道如何换乘才能到达这个终极目标地址。因此,工作人员给出的方法是首先去往最近的一个车站,再咨询这一车站的工作人员。而到了这个车站以后再询问工作人员如何才能达到最终的目标地址时,仍然得到同样的建议:乘坐某某线列车到某某车站以后再询问那里的工作人员。

于是,该乘客就按照每一个车站工作人员的指示,到达下一车站以后再继续询问车站的工作人员,得到类似的建议。

因此,即使乘客不知道其最终目的地的方向也没有关系。可以通过每到一个车站咨询工作人员的这种极其偶然(英文叫做“Ad Hoc”,是指具有偶然性的、在各跳之间无计划传输的意思。尤其在谈到IP时经常会用到该词。) 的方法继续前进,也可以到达最终的目标地址。

IP数据包的传输亦是如此。可以将旅行者看做IP数据包,将车站和工作人员看做路由器。当某个IP包到达路由器时,路由器首先查找其目标地址(IP包被转发到途中的某个路由器时,实际上是装入数据链路层的数据帧以后再被送出。以以太网为例,目标MAC地址就是下一个路由器的MAC地址。) ,从而再决定下一步应该将这个包发往哪个路由器,然后将包发送过去。当这个IP包到达那个路由器以后,会再次经历查找下一目标地址的过程,并由该路由器转发给下一个被找到的路由器。这个过程可能会反复多次,直到找到最终的目标地址将数据包发送给这个节点。

这里还可以用快递的送货方式来打比方。IP数据包犹如包裹,而送货车犹如数据链路。包裹不可能自己移动,必须有送货车承载转运。而一辆送货车只能将包裹送到某个区间范围内。每个不同区间的包裹将由对应的送货车承载、运输。IP的工作原理也是如此。
请添加图片描述

■ 路由控制表

为了将数据包发给目标主机,所有主机都维护着一张路由控制表(Routing Table)。该表记录IP数据在下一步应该发给哪个路由器。IP包将根据这个路由表在各个数据链路上传输。
请添加图片描述

数据链路的抽象化

IP是实现多个数据链路之间通信的协议。数据链路根据种类的不同各有特点。对这些不同数据链路的相异特性进行抽象化也是IP的重要作用之一。数据链路的地址可以被抽象化为IP地址。因此,对IP的上一层来说,不论底层数据链路使用以太网还是无线LAN亦或是PPP,都将被一视同仁。

不同数据链路有个最大的区别,就是它们各自的最大传输单位(MTU:Maximum Transmission Unit)不同。就好像人们在邮寄包裹或行李时有各自的大小限制一样。

MTU的值在以太网中是1500字节,在FDDI中是4352字节,而ATM则为9180字节。IP的上一层可能会要求传送比这些MTU更多字节的数据,因此必须在线路上传送比包长还要小的MTU。

为了解决这个问题,IP进行分片处理(IP Fragmentation)。顾名思义,所谓分片处理是指,将较大的IP包分成多个较小的IP包 。分片的包到了对端目标地址以后会再被组合起来传给上一层。即从IP的上次层看,它完全可以忽略数据包在途中的各个数据链路上的MTU,而只需要按照源地址发送的长度接收数据包。IP就是以这种方式抽象化了数据链路层,使得从上层更不容易看到底层网络构造的细节。

IP属于面向无连接型

IP面向无连接。即在发包之前,不需要建立与对端目标地址之间的连接。上层如果遇到需要发送给IP的数据,该数据会立即被压缩成IP包发送出去。

在面向有连接的情况下,需要事先建立连接。如果对端主机关机或不存在,也就不可能建立连接。反之,一个没有建立连接的主机也不可能发送数据过来。

而面向无连接的情况则不同。即使对端主机关机或不存在,数据包还是会被发送出去。反之,对于一台主机来说,它会何时从哪里收到数据也是不得而知的。通常应该进行网络监控,让主机只接收发给自己的数据包。若没有做好准备很有可能会错过一些该收的包。因此,在面向无连接的方式下可能会有很多冗余的通信。

那么,为什么IP要采用面向无连接呢?

主要有两点原因:一是为了简化,二是为了提速。面向连接比起面向无连接处理相对复杂。甚至管理每个连接本身就是一个相当繁琐的事情。此外,每次通信之前都要事先建立连接,又会降低处理速度。需要有连接时,可以委托上一层提供此项服务。因此,IP为了实现简单化与高速化采用面向无连接的方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/36358.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL系列】在Centos7环境安装MySQL

「前言」文章内容大致是在Centos7环境安装MySQL,演示安装的版本为5.7 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 「枫叶先生有点文青病」「句子分享」 浮生梦,三生渺渺, 因缘无踪,虽堪恋,何必…

uniapp 微信小程序导航功能(从地址列表内点击某一个地址)

效果图&#xff1a; <template><view class"user"><view class"list"><view class"title">地址列表</view><view class"title-label"><view>名称</view><view>距离&#xff…

如何做好大客户管理?一文讲清方法、策略、案例

《连线》杂志创始人凯文凯利&#xff08;Kevin Kelly&#xff09;在《技术元素》一书中写道&#xff1a;“数量不是目的&#xff0c;质量才是根本&#xff0c;重视1%的超级用户才是提高效率的关键。” 根据“二八定律”&#xff0c;通常20%的大客户会带来80%的项目和收益。这点…

react 利用antd-mobile实现楼层效果

首先是js模块 import React, { useEffect, useRef, useState } from react import { SideBar } from antd-mobile import ./louceng.css import { useThrottleFn } from ahooksconst items [{ key: 1, title: 第一项, text: <div>12313212313第一项12313212313第一项1…

Python 运算符(一)

文章目录 前言什么是运算符&#xff1f;Python算术运算符Python比较运算符Python赋值运算符Python位运算符 前言 Python 运算符是用于执行各种运算的符号。Python 支持各种类型的运算符&#xff0c;包括算术运算符、比较运算符、逻辑运算符等。在使用 Python 进行编程时&#…

qt 闹钟实现

实现一个闹钟 自定义时间 按下开始后 开始计时&#xff0c;结束计时会播报语音 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimer> #include <QTimerEvent> #include <QDateTime> #include <QTime> #include …

【LittleXi】 N-gram模型(C++实现)

LittleXi N-gram模型&#xff08;C实现&#xff09;马尔科夫性 (独立性假设)代码实现英文训练版本中文训练版本 训练效果 N-gram模型&#xff08;C实现&#xff09; 定义&#xff1a;通俗地讲&#xff0c;就是利用前文的单词&#xff0c;来推算下一个最大概率出现的单词 马尔…

springboot超市进销存系统

本次设计任务是要设计一个超市进销存系统&#xff0c;通过这个系统能够满足超市进销存系统的管理及员工的超市进销存管理功能。系统的主要功能包括&#xff1a;首页、个人中心、员工管理、客户管理、供应商管理、承运商管理、仓库信息管理、商品类别管理、 商品信息管理、采购信…

Elasticsearch 8.8.1安装及启动

华为云的镜像去下载 ElasticSearch: https://mirrors.huaweicloud.com/elasticsearch/?CN&OD logstash: https://mirrors.huaweicloud.com/logstash/?CN&OD kibana: https://mirrors.huaweicloud.com/kibana/?CN&OD 原文链接&#xff1a;https://blog.csdn.ne…

2022前端趋势报告(下)

前端博主&#xff0c;热衷各种前端向的骚操作&#xff0c;经常想到哪就写到哪&#xff0c;如果有感兴趣的技术和前端效果可以留言&#xff5e;博主看到后会去代替大家踩坑的&#xff5e; 主页: oliver尹的主页 格言: 跌倒了爬起来就好&#xff5e; 一、前言 本文内容来自于《St…

RocketMQ5.0消息消费<二> _ 消息队列负载均衡机制

RocketMQ5.0消息消费&#xff1c;二&#xff1e; _ 消息队列负载均衡机制 一、消费队列负载均衡概览 RocketMQ默认一个主题下有4个消费队列&#xff0c;集群模式下同一消费组内要求每个消费队列在同一时刻只能被一个消费者消费。那么集群模式下多个消费者是如何负载主题的多个…

阿里云绑定域名

在阿里云安全组与宝塔安全放开8081端口 server {listen 8081;server_name www.whxyyds.top;charset utf-8;location / {root /home/ruoyi/projects/ruoyi-ui;try_files $uri $uri/ /index.html;index index.html index.htm;}location /prod-api/ {proxy_set_header …

为生信写的Python简明教程 | 视频10

开源生信 Python教程 生信专用简明 Python 文字和视频教程 源码在&#xff1a;https://github.com/Tong-Chen/Bioinfo_course_python 目录 背景介绍 编程开篇为什么学习Python如何安装Python如何运行Python命令和脚本使用什么编辑器写Python脚本Python程序事例Python基本语法 数…

第N4周:使用Word2vec实现文本分类

目录 二、数据预处理1.加载数据2.构建词典3.生成数据批次和迭代器 二、模型构建1.搭建模型2.初始化模型3.定义训练与评估函数 三、训练模型1.拆分数据集并运行模型2.测试指定数据 &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&…

Spring Boot 系列2 -- 配置文件

目录 1. 配置文件的作用 2. 配置文件的格式 3. properties 配置文件说明 3.1 properties 基本语法 3.2 读取配置文件 3.3 properties 缺点 4.yml 配置文件说明 4.1 yml 基本语法 4.2 yml 使用进阶 4.2.1 yml 配置不同数据类型及 null 4.2.2 yml 配置读取 4.2.3 注意…

DPWWN1靶场详解

DPWWN1靶场详解 首先还是nmap -sP 192.168.102.0/24扫描到ip地址&#xff0c;然后对这个ip进行一个单独的扫描&#xff0c;发现这个靶场有一个mysql数据库&#xff0c;猜测可能会用到sql注入&#xff0c;但是没用到。 ip登陆到网页发现并没有什么可利用的 唯一的切入点也就数…

Java 动态规划 Leetcode 62. 不同路径

代码展示&#xff1a; class Solution {public int uniquePaths(int m, int n) {//定义dp数组//二维数组多增加一行一列&#xff0c;方便对数组进行初始化int[][]dpnew int[m1][n1];//初始化dp[0][1]1;//填充数组for(int i1;i<m;i){for(int j1;j<n;j){dp[i][j]dp[i-1][j…

基于springboot+Redis的前后端分离项目(七)-【黑马点评】

&#x1f381;&#x1f381;资源文件分享 链接&#xff1a;https://pan.baidu.com/s/1189u6u4icQYHg_9_7ovWmA?pwdeh11 提取码&#xff1a;eh11 发布笔记&#xff0c;点赞&#xff0c;点赞排行 达人探店1、达人探店-发布探店笔记2、 达人探店-查看探店笔记3、 达人探店-点赞功…

《网络安全标准实践指南》(72页)

导读 摘要&#xff1a;为指导网络数据安全风险评估工作&#xff0c;发现数据安全隐患&#xff0c;防范数据安全风险&#xff0c;依据《中华人民共和国网络安全法》《中华人民共和国数据安全法》《中华人民共和国个人信息保护法》等法律法规&#xff0c;参照数据安全相关国家标…

STM32寄存器点亮LED灯

一&#xff1a; 如何寄存器点灯 1&#xff1a;看单片机的原理图 找到LED灯 这个灯是 PB5引脚 看原理图可以看出 让GPIOB5输出低电平 就能点亮那么我们得让打开控制GPIOB5的时钟让GPIOB5 输出模式让GPIOB5低电平 二&#xff1a;看中文参考手册配置寄存器 2.1&#xff1a;打开管…