机器学习 低代码 ML:PyCaret 的使用

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

    • PyCaret 简介
    • PyCaret 实践
      • 安装 PyCaret
      • 使用 PyCaret 进行分类任务
      • 使用 PyCaret 进行回归任务


PyCaret 简介

PyCaret 是一个开源的低代码 Python 库,专注于简化机器学习(ML)工作流程并加速实验过程。它特别适用于数据科学家、分析师和开发人员,通过减少实现 ML 解决方案所需的繁琐编码工作来提高工作效率。PyCaret 可以在一个统一且用户友好的接口下提供多种机器学习任务的支持,包括但不限于分类、回归、聚类、异常检测、关联规则挖掘等。

PyCaret

以下是一些关于 PyCaret 的关键特点和功能:

  1. 低代码自动化

    • PyCaret 允许用户通过简洁的 API 调用快速执行数据预处理、特征工程、模型训练、模型评估和模型选择等步骤。
    • 用户无需编写大量的底层代码即可完成复杂的机器学习任务,仅需少量命令就能在几秒钟内搭建和比较多个模型。
  2. 集成多种库

    • 库内部封装了诸如 scikit-learn、XGBoost、LightGBM、CatBoost 等流行机器学习框架,并提供了对这些库中模型的便捷访问和管理。
    • 同时也集成了其他辅助工具,如用于文本处理的 spaCy,以及用于超参数优化的 Optuna、Hyperopt 等。
  3. 模块化设计

    • PyCaret 按照不同机器学习任务划分为不同的模块,例如classificationregressionclusteringanomaly_detection等,每个模块都包含了对应任务特定的方法和函数。
  4. 端到端解决方案

    • 提供从数据加载到模型部署的完整生命周期管理,支持项目保存和加载,便于复现实验结果和迁移学习。
    • 包括可视化工具,可以方便地生成各种性能指标图表,帮助用户直观理解模型表现和数据分布。
  5. 资源效率

    • 由于其自动化特性,PyCaret 能够在较小的计算资源消耗下进行大量实验,从而节省时间和计算成本。
  6. 易用性

    • 对于新手友好,使得没有丰富编程经验的数据科学爱好者也能快速入门并开始探索机器学习领域。

使用 PyCaret 进行机器学习实验时,用户通常首先初始化一个环境,设置数据分割策略、目标变量以及其他实验参数,然后就可以直接运行对比试验、调整模型配置、进行特征重要性分析等操作。这一系列过程极大提升了数据分析和建模的工作效率。

PyCaret 实践

安装 PyCaret

pip install pycaret

使用 PyCaret 进行分类任务

以 PyCaret 官方提供的 diabetes 数据集为例。

# 加载数据集
from pycaret.datasets import get_data
diabetes = get_data("diabetes")

diabetes 数据集

# 初始化分类实验
from pycaret.classification import *
s = setup(data, target="Class variable", session_id=123)

分类实验概况

# 比较多个模型
best = compare_models()

分类模型比较结果

# 打印最佳模型
print(best)

最佳分类模型

# 评估模型
evaluate_model(best)

分类模型评估结果

# 绘制 AUC 曲线
plot_model(best, plot="auc")

AUC 曲线

# 绘制混淆矩阵
plot_model(best, plot="confusion_matrix")

混淆矩阵

# 使用最优模型进行预测
predictions = predict_model(best, data=data)
predictions.head()

分类预测结果

# 输出概率分数
predictions = predict_model(best, data=data, raw_score=True)
predictions.head()

分类概率分数

# 保存模型
save_model(best, "my_best_pipeline")

保存模型

# 加载模型
loaded_model = load_model("my_best_pipeline")
print(loaded_model)

加载模型

使用 PyCaret 进行回归任务

以 PyCaret 官方提供的 insurance 数据集为例。

# 加载数据集
from pycaret.datasets import get_data
insurance = get_data("insurance")

insurance 数据集

# 初始化回归实验
from pycaret.regression import *
s = setup(data, target="charges", session_id=123)

回归实验概况

# 比较多个模型
best = compare_models()

回归模型比较结果

# 打印最佳模型
print(best)

最佳回归模型

# 评估模型
evaluate_model(best)

回归模型评估结果

# 绘制残差分布图
plot_model(best, plot="residuals")

残差分布图

# 绘制特征重要性图
plot_model(best, plot="feature")

特征重要性图

# 使用最优模型进行预测
predictions = predict_model(best, data=data)
predictions.head()

回归预测结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/362179.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大数加法-----蓝桥杯

题目描述 以字符串的形式读入两个数字&#xff0c;编写一个函数计算它们的和&#xff0c;以字符串形式返回。 数据范围: s.length,tlength < 100000&#xff0c;字符串仅由0~9构成要求: 时间复杂度 O(n)。 结构示例1&#xff1a; 结果示例2&#xff1a; 代码展示&#xff…

在中国,大多数做机器视觉工程师的人的出路是什么?

工程师一直号称是靠技术吃饭&#xff0c;越老越吃香。显然我们机器视觉工程师归属于工程师。 可是这种是一种低级趣味的思维力度。 试问现在程序员难道不是越老越吃香吗&#xff1f; 律师难道不是吗&#xff1f; 银行家难道不是吗&#xff1f; 现在整体经济下滑情况&#xff0…

C++ 菱形继承和虚拟菱形继承

菱形继承和虚拟菱形继承 菱形继承1. 概念2. 产生的问题 虚拟菱形继承1.1 使用1.2 原理 菱形继承 1. 概念 菱形继承是多继承的一个特殊情况&#xff0c;多继承是指一个子类类继承了两个或以上的直接父类&#xff0c;而菱形继承问题的产生是因为该子类的父类&#xff0c;继承了…

超好看的前端特效HTML特效、CSS特效、JS特效(第一期)

超好看的前端特效 1. 粒子组成文字动画特效 文件组成&#xff1a; base.css import url(https://fonts.googleapis.com/css?familyAbrilFatface|Raleway:300,400,900);.coidea-header {position: fixed;display: block;width: 96%;width: calc( 100% - 32px );height: 40px;m…

面试题:Feign第一次调用为什么会很慢?

文章目录 前言Ribbon是如何进行负载的RibbonClientConfigurationZoneAwareLoadBalancerRibbon负载均衡策略Ribbon-eager-load&#xff08;饥饿加载&#xff09;模式开启Ribbon饥饿加载总结 前言 首先要了解 Feign 是如何进行远程调用的&#xff0c;这里面包括&#xff0c;注册…

Fiddler修改https请求与响应 bug修复变灰了选不了等 Fiddle对夜神模拟器抓包设置

不要修改别人的东西&#xff0c;不要修改别人的东西&#xff0c;不要修改别人的东西 只用于自己的网站&#xff0c;自己安全调试。 fiddler修改https请求 1、打到要改的请求 2、替换请求内容 3、开启捕获。操作产生请求。 4、fiddler里查看请求或响应数据 &#xff0c;确认成…

ubuntu20配置mysql8

首先更新软件包索引运行 sudo apt update命令。然后运行 sudo apt install mysql-server安装MySQL服务器。 安装完成后&#xff0c;MySQL服务将作为systemd服务自动启动。你可以运行 sudo systemctl status mysql命令验证MySQL服务器是否正在运行。 连接MySQL 当MySQL安装…

操作系统基础:进程同步【下】

&#x1f308;个人主页&#xff1a;godspeed_lucip &#x1f525; 系列专栏&#xff1a;OS从基础到进阶 1 进程同步⛵1.1 吸烟者问题✈️1.1.1 问题描述✈️1.1.2 问题分析1.1.2.1 关系分析&#xff08;确定同步、互斥关系&#xff09;1.1.2.2 整理思路&#xff08;确定PV操作的…

Golang语言异常机制解析:错误策略与优雅处理

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。 前言 作为开发者来说&#xff0c;我们没办法保证程序在运行过程中永远不会出现异常&#xff0c;对于异常…

K8S网络

一、介绍 k8s不提供网络通信&#xff0c;提供了CNI接口(Container Network Interface&#xff0c;容器网络接口)&#xff0c;由CNI插件实现完成。 1.1 Pod通信 1.1.1 同一节点Pod通信 Pod通过虚拟Ethernet接口对&#xff08;Veth Pair&#xff09;与外部通信&#xff0c;Veth…

Unity_颜色空间GammaLinear

Unity_颜色空间Gamma&Linear Unity颜色空间的选择对于效果的影响具体有多大&#xff1f; 在ProjectSetting -> Player -> OtherSetting -> Rendering设置下的颜色空间选项卡选择颜色空间进行设置&#xff1a; 太深奥的解释一时半会看不懂&#xff0c;找见一个粗…

jsp 样衣申请与归还管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 样衣申请与归还管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境 为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为My…

地理空间分析10——空间数据分析中的地理编码与Python

目录 写在开头1. 地理编码基础1.1 地理编码的基本原理1.1.1 坐标系统1.1.2 地名解析1.1.3 编码算法1.2 Python中使用地理编码的基础知识1.2.1 百度地图API1.2.2 高德地图API1.2.3 腾讯地图API1.3 Python中实现代码2. 逆地理编码2.1 利用Python进行逆地理编码2.1.1 获取高德地图…

地毯填补问题

地毯填补问题 题目描述 相传在一个古老的阿拉伯国家里&#xff0c;有一座宫殿。宫殿里有个四四方方的格子迷宫&#xff0c;国王选择驸马的方法非常特殊&#xff0c;也非常简单&#xff1a;公主就站在其中一个方格子上&#xff0c;只要谁能用地毯将除公主站立的地方外的所有地…

使用最大边界相关算法处理文章自动摘要

一、需求背景 对于博客或者文章来说&#xff0c;摘要是普遍性的需求。但是我们不可能让作者自己手动填写摘要或者直接暴力截取文章的部分段落作为摘要&#xff0c;这样既不符合逻辑又不具有代表性&#xff0c;那么&#xff0c;是否有相关的算法或者数学理论能够完成这个需求呢&…

python给word插入脚注

1.需求 最近因为工作需要&#xff0c;需要给大量文本的脚注插入内容&#xff0c;我就写了个小程序。 2.实现 下面程序是我已经给所有脚注插入了两次文本“幸福”&#xff0c;给脚注2到4再插入文本“幸福” from win32com import clientdef add_text_to_specific_footnotes(…

汽车销量可视化分析

目录 一.分析的背景、目的、意义 1、背景 2、目的 3、意义 二.数据来源 三.图表分析 1、汽车品牌销量柱状图 2、中国汽车销量柱状图 3、汽车销量前10排行柱状图 4、汽车厂商销量折线图 ​编辑5、汽车销量词云图 6、汽车车型销量 7、汽车价格分布雷达图 8、汽车分…

【FAS Survey】《Deep learning for face anti-spoofing: A Survey》

PAMI-2022 最新成果&#xff1a;https://github.com/ZitongYu/DeepFAS 文章目录 1 Introduction & Background1.1 Face Spoofing Attacks1.2 Datasets for Face Anti-Spoofing1.3 Evaluation Metrics1.4 Evaluation Protocols 2 Deep FAS with Commercial RGB Camera2.1 H…

MFC 对话框架构

目录 Win32对话框回顾 对话框架构 无模式对话框架构程序执行过程 Win32对话框回顾 MFC框架中都是无模式对话框&#xff0c;不会阻塞&#xff0c;先回顾一下无模式对话框的创建&#xff1a; 添加对话框资源查找资源&#xff0c;FindResource加载资源&#xff0c;LoadResour…

idea自动生成实体类

第一步&#xff1a;idea连接数据库 出现这个就连接成功 第二步&#xff1a;选择数据库 第三步&#xff1a;创建实体类 也可以点击数据库一下子全部创建 选择创建实体类所放位置 这样就完成了&#xff0c;点击看看对其做相应修改