【Tomcat与网络8】从源码看Tomcat的层次结构

在前面我们介绍了如何通过源码来启动Tomcat,本文我们就来看一下Tomcat是如何一步步启动的,以及在启动过程中,不同的组件是如何加载的。

一般,我们可以通过 Tomcat 的 /bin 目录下的脚本 startup.sh 来启动 Tomcat,如果是window那就用startup.bat来启动。 那我们执行了这个脚本后发生了什么呢?

目录

1.整体结构

2.文件解析与组件创建器—Catalina

3.Catalina如何孕育出众多组件的

4.Server 组件

5.Service 组件

6.Engine 组件


1.整体结构

在一篇中,我们看到tomcat启动是从类Bootstrap里的Main方法开始的,因此对于Tomcat而说,Bootstrap就是创造万物的工具。

之后的工作,可以通过下面这张流程图来了解一下。

  1. Tomcat 本质上是一个 Java 程序,因此 startup.sh 脚本最 核心的工作就是启动一个 JVM 来运行 Tomcat 的启动类 Bootstrap。
  2. Bootstrap 的主要任务是初始化 Tomcat 的类加载器,并且创建 Catalina。
  3. Catalina 是一个启动类,它通过解析 server.xml来创建相应的组件,并调用 Server 的 start 方法。
  4. Server 组件的职责就是管理 Service 组件,它会负责调用 Service 的 start() 方法。
  5. Service 组件的职责就是管理连接器和顶层容器 Engine,因此它会调用连接器和 Engine 的 start 方法。

这样 Tomcat 的启动就算完成了。下面我来详细介绍一下上面这个启动过程中提到的几个非常关键的启动类和组件。

如果我们以一个互联网大厂, 比如腾宝,那么 Bootstrap就是创始人马老师,而Server则是不同的事业群,例如支付宝、天猫、阿里云等等。Service 是事业群总经理,一般事业群里会有多个部门,而在Tomcat里,Service管理两个职能部门:一个是对外的市场部,也就是连接器组件;另一个是对内的研发部,也就是容器组件。

再向下,Engine 则是研发部经理,之后的Service就是具体干活的你和我,在Tomcat里就是Servlet。

2.文件解析与组件创建器—Catalina

Catalina 的主要任务就是创建 Server,它不是直接 new 一个 Server 实例就完事了,而是需要解析 server.xml,所以打开Catalina类的代码,我们会发现很多篇幅都是和解析xml或者Digester类有关系,后者也是解析文件的。

Catalina的作用就是把在 server.xml 里配置的各种组件一一创建出来,接着调用 Server 组件的 init 方法和 start 方法,这样整个 Tomcat 就启动起来了。作为“管理者”,Catalina 还需要处理各种“异常”情况,比如当我们通过“Ctrl + C”关闭 Tomcat 时,Tomcat 将如何优雅的停止并且清理资源呢?因此 Catalina 在 JVM 中注册一个“关闭钩子”。

public void start() {
    //1. 如果持有的 Server 实例为空,就解析 server.xml 创建出来
    if (getServer() == null) {
        load();
    }
    //2. 如果创建失败,报错退出
    if (getServer() == null) {
        log.fatal(sm.getString("catalina.noServer"));
        return;
    }
 
    //3. 启动 Server
    try {
        getServer().start();
    } catch (LifecycleException e) {
        return;
    }
 
    // 创建并注册关闭钩子
    if (useShutdownHook) {
        if (shutdownHook == null) {
            shutdownHook = new CatalinaShutdownHook();
        }
        Runtime.getRuntime().addShutdownHook(shutdownHook);
    }
 
    // 用 await 方法监听停止请求
    if (await) {
        await();
        stop();
    }
}

那什么是“关闭钩子”,它又是做什么的呢?如果我们需要在 JVM 关闭时做一些清理工作,比如将缓存数据刷到磁盘上,或者清理一些临时文件,可以向 JVM 注册一个“关闭钩子”。“关闭钩子”其实就是一个线程,JVM 在停止之前会尝试执行这个线程的 run 方法。下面我们来看看 Tomcat 的“关闭钩子”CatalinaShutdownHook 做了些什么。

protected class CatalinaShutdownHook extends Thread {
 
    @Override
    public void run() {
        try {
            if (getServer() != null) {
                Catalina.this.stop();
            }
        } catch (Throwable ex) {
           ...
        }
    }
}

从这段代码中你可以看到,Tomcat 的“关闭钩子”实际上就执行了 Server 的 stop 方法,Server 的 stop 方法会释放和清理所有的资源。

3.Catalina如何孕育出众多组件的

我们提的这些重要的组件是在Catalina的哪里创建的呢?如果没有找到位置,我们总是会感觉少了点什么。

这个创建的入口是Catalina里调用createStartDigester()来创建的,创建之后的内容通过Digester来管理。我们分别看创建各个组件的起始位置:

【1】创建Server实例

        digester.addObjectCreate("Server",
                                 "org.apache.catalina.core.StandardServer",
                                 "className");
        digester.addSetProperties("Server");
        digester.addSetNext("Server",
                            "setServer",
                            "org.apache.catalina.Server");

Catania中Server的默认实现类是类:org.apache.catalina.core.StandardServer。但是我们可以童工属性className来修改。

【2】创建全局J2EE的企业命名上下文JNDI

        digester.addObjectCreate("Server/GlobalNamingResources",
                                 "org.apache.catalina.deploy.NamingResourcesImpl");
        digester.addSetProperties("Server/GlobalNamingResources");
        digester.addSetNext("Server/GlobalNamingResources",
                            "setGlobalNamingResources",
                            "org.apache.catalina.deploy.NamingResourcesImpl");

JDNI这个名字经常见到,但是从来没用过,不管了。

【3】为Server增加生命周期监听器

        digester.addRule("Server/Listener",
                new ListenerCreateRule(null, "className"));
        digester.addSetProperties("Server/Listener");
        digester.addSetNext("Server/Listener",
                            "addLifecycleListener",
                            "org.apache.catalina.LifecycleListener");

Server元素支持配置生命周期监听器,用于为当前的Servlet实例添加LifecycleListener监听器

顺着这个方法向下看,我们会可以看到为Service添加Connector等等很多组件。

看这个有什么用呢?主要是帮助我们找到了学习的入口,知道怎么初始化,我们就能慢慢理清楚怎么工作了。

4.Server 组件

Server 组件的具体实现类是 StandardServer,我们来看下 StandardServer 具体实现了哪些功能。Server 继承了 LifeCycleBase,它的生命周期被统一管理,并且它的子组件是 Service,因此它还需要管理 Service 的生命周期,也就是说在启动时调用 Service 组件的启动方法,在停止时调用它们的停止方法。Server 在内部维护了若干 Service 组件,它是以数组来保存的,那 Server 是如何添加一个 Service 到数组中的呢?

@Override
public void addService(Service service) {
 
    service.setServer(this);
 
    synchronized (servicesLock) {
        // 创建一个长度 +1 的新数组
        Service results[] = new Service[services.length + 1];
        
        // 将老的数据复制过去
        System.arraycopy(services, 0, results, 0, services.length);
        results[services.length] = service;
        services = results;
 
        // 启动 Service 组件
        if (getState().isAvailable()) {
            try {
                service.start();
            } catch (LifecycleException e) {
                // Ignore
            }
        }
 
        // 触发监听事件
        support.firePropertyChange("service", null, service);
    }
 
}

从上面的代码你能看到,它并没有一开始就分配一个很长的数组,而是在添加的过程中动态地扩展数组长度,当添加一个新的 Service 实例时,会创建一个新数组并把原来数组内容复制到新数组,这样做的目的其实是为了节省内存空间。

这种用法很明显效率是不高的,因此在工程里极少看到,这里也算增长了我们的见识吧。

除此之外,Server 组件还有一个重要的任务是启动一个 Socket 来监听停止端口,这就是为什么你能通过 shutdown 命令来关闭 Tomcat。不知道你留意到没有,上面 Caralina 的启动方法的最后一行代码就是调用了 Server 的 await 方法。

在 await 方法里会创建一个 Socket 监听 8005 端口,并在一个死循环里接收 Socket 上的连接请求,如果有新的连接到来就建立连接,然后从 Socket 中读取数据;如果读到的数据是停止命令“SHUTDOWN”,就退出循环,进入 stop 流程。

5.Service 组件

Service 组件的具体实现类是 StandardService,我们先来看看它的定义以及关键的成员变量。

public class StandardService extends LifecycleBase implements Service {
    // 名字
    private String name = null;
    
    //Server 实例
    private Server server = null;
 
    // 连接器数组
    protected Connector connectors[] = new Connector[0];
    private final Object connectorsLock = new Object();
 
    // 对应的 Engine 容器
    private Engine engine = null;
    
    // 映射器及其监听器
    protected final Mapper mapper = new Mapper();
    protected final MapperListener mapperListener = new MapperListener(this);

StandardService 继承了 LifecycleBase 抽象类,此外 StandardService 中还有一些我们熟悉的组件,比如 Server、Connector、Engine 和 Mapper。

那为什么还有一个 MapperListener?这是因为 Tomcat 支持热部署,当 Web 应用的部署发生变化时,Mapper 中的映射信息也要跟着变化,MapperListener 就是一个监听器,它监听容器的变化,并把信息更新到 Mapper 中,这是典型的观察者模式。

作为“管理”角色的组件,最重要的是维护其他组件的生命周期。此外在启动各种组件时,要注意它们的依赖关系,也就是说,要注意启动的顺序。我们来看看 Service 启动方法:

protected void startInternal() throws LifecycleException {
 
    //1. 触发启动监听器
    setState(LifecycleState.STARTING);
 
    //2. 先启动 Engine,Engine 会启动它子容器
    if (engine != null) {
        synchronized (engine) {
            engine.start();
        }
    }
    
    //3. 再启动 Mapper 监听器
    mapperListener.start();
 
    //4. 最后启动连接器,连接器会启动它子组件,比如 Endpoint
    synchronized (connectorsLock) {
        for (Connector connector: connectors) {
            if (connector.getState() != LifecycleState.FAILED) {
                connector.start();
            }
        }
    }
}

从启动方法可以看到,Service 先启动了 Engine 组件,再启动 Mapper 监听器,最后才是启动连接器。这很好理解,因为内层组件启动好了才能对外提供服务,才能启动外层的连接器组件。而 Mapper 也依赖容器组件,容器组件启动好了才能监听它们的变化,因此 Mapper 和 MapperListener 在容器组件之后启动。组件停止的顺序跟启动顺序正好相反的,也是基于它们的依赖关系。

6.Engine 组件

最后我们再来看看顶层的容器组件 Engine 具体是如何实现的。Engine 本质是一个容器,因此它继承了 ContainerBase 基类,并且实现了 Engine 接口。

public class StandardEngine extends ContainerBase implements Engine {
}

我们知道,Engine 的子容器是 Host,所以它持有了一个 Host 容器的数组,这些功能都被抽象到了 ContainerBase 中,ContainerBase 中有这样一个数据结构:

protected final HashMap<String, Container> children = new HashMap<>();

ContainerBase 用 HashMap 保存了它的子容器,并且 ContainerBase 还实现了子容器的“增删改查”,甚至连子组件的启动和停止都提供了默认实现,比如 ContainerBase 会用专门的线程池来启动子容器。

for (int i = 0; i < children.length; i++) {
   results.add(startStopExecutor.submit(new StartChild(children[i])));
}

所以 Engine 在启动 Host 子容器时就直接重用了这个方法。

那 Engine 自己做了什么呢?我们知道容器组件最重要的功能是处理请求,而 Engine 容器对请求的“处理”,其实就是把请求转发给某一个 Host 子容器来处理,具体是通过 Valve 来实现的。

通过前面的学习,我们知道每一个容器组件都有一个 Pipeline,而 Pipeline 中有一个基础阀(Basic Valve),而 Engine 容器的基础阀定义如下:

final class StandardEngineValve extends ValveBase {
 
    public final void invoke(Request request, Response response)
      throws IOException, ServletException {
  
      // 拿到请求中的 Host 容器
      Host host = request.getHost();
      if (host == null) {
          return;
      }
  
      // 调用 Host 容器中的 Pipeline 中的第一个 Valve
      host.getPipeline().getFirst().invoke(request, response);
  }
  
}

这个基础阀实现非常简单,就是把请求转发到 Host 容器。你可能好奇,从代码中可以看到,处理请求的 Host 容器对象是从请求中拿到的,请求对象中怎么会有 Host 容器呢?这是因为请求到达 Engine 容器中之前,Mapper 组件已经对请求进行了路由处理,Mapper 组件通过请求的 URL 定位了相应的容器,并且把容器对象保存到了请求对象中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/361380.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

京东采销急眼,隔空喊话“针对”拼多多,焦虑之下为哪般?

农历新年将至&#xff0c;无论是线下各大商超还是线上电商平台&#xff0c;皆为年终大促而“忙的不亦乐乎”&#xff0c;尤其是近期发生的京东采销人员在直播间向拼多多喊话&#xff0c;“恳请拼多多停止屏蔽&#xff0c;恳请拼多多直接比价”&#xff0c;更是将年底这场朴实无…

CPN故障诊断(MATLAB)

CPN(Colored Petri Net,彩色Petri网)是在传统Petri网的基础上进行扩展的高级Petri网。它在故障诊断领域有着广泛的应用。 CPN故障诊断的主要思想和步骤如下: 建模:根据系统的结构和功能,采用CPN构建系统的模型。将系统不同组件表示为网的位置,数据/信号流表示为网的转换,故障…

【百度Apollo】轨迹绘制:探索路径规划和可视化技术的应用

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下…

中移(苏州)软件技术有限公司面试问题与解答(5)—— Linux进程调度参数调优是如何通过代码实际完成的1

接前一篇文章&#xff1a;中移&#xff08;苏州&#xff09;软件技术有限公司面试问题与解答&#xff08;0&#xff09;—— 面试感悟与问题记录 本文对于中移&#xff08;苏州&#xff09;软件技术有限公司面试问题中的“&#xff08;11&#xff09;Linux进程调度参数调优是如…

面向对象编程(高级)(上)

下篇链接见&#xff1a;面向对象编程&#xff08;高级&#xff09;(下&#xff09; 文章目录 一. 关键字&#xff1a;static1.1 类属性、类方法的设计思想1.2 static关键字1.3 静态变量1.3.1 语法格式1.3.2 静态变量的特点1.3.3 举例1.3.4 内存解析 1.4 静态方法1.4.1 语法格式…

1 月 30 日算法练习-思维和贪心

文章目录 重复字符串翻硬币乘积最大 重复字符串 思路&#xff1a;判断是否能整除&#xff0c;如果不能整除直接退出&#xff0c;能整除每次从每组对应位置中找出出现最多的字母将其他值修改为它&#xff0c;所有修改次数即为答案。 #include<iostream> using namespace …

AI新工具(20240126) 夸克 AI PPT-夸克 AI PPT,一键自动生成PPT;GeminiPro Next Web-一键免费部署

夸克 AI PPT-夸克 AI PPT,一键自动生成PPT 夸克AI PPT是夸克App推出的全新产品&#xff0c;用户只需输入PPT主题&#xff0c;就能在几十秒内生成一份精美且专业的PPT文档。夸克AI PPT具有更智能、更专业、更易操作的特点&#xff0c;让用户在手机端完成PPT创作&#xff0c;并提…

【C/C++】C/C++编程——整型(一)

整型 C 中的整型是基本的数据类型之一&#xff0c;用于表示没有小数部分的数。这包括正整数、负整数以及零。C 提供了多种整型&#xff0c;以适应不同大小的数值需求和优化内存使用。 整型的种类 C 中的整型可以根据其大小&#xff08;即占用的字节数&#xff09;和能够表示…

蓝桥杯2024/1/31----第十届省赛题笔记

题目要求&#xff1a; 1、 基本要求 1.1 使用大赛组委会提供的国信长天单片机竞赛实训平台&#xff0c;完成本试题的程序设计 与调试。 1.2 选手在程序设计与调试过程中&#xff0c;可参考组委会提供的“资源数据包”。 1.3 请注意&#xff1a; 程序编写、调试完成后选手…

RocksDB是如何实现存算分离的

核心参考文献&#xff1a; Dong, S., P, S. S., Pan, S., Ananthabhotla, A., Ekambaram, D., Sharma, A., Dayal, S., Parikh, N. V., Jin, Y., Kim, A., Patil, S., Zhuang, J., Dunster, S., Mahajan, A., Chelluri, A., Datye, C., Santana, L. V., Garg, N., & Gawde,…

Flink CEP实现10秒内连续登录失败用户分析

1、什么是CEP&#xff1f; Flink CEP即 Flink Complex Event Processing&#xff0c;是基于DataStream流式数据提供的一套复杂事件处理编程模型。你可以把他理解为基于无界流的一套正则匹配模型&#xff0c;即对于无界流中的各种数据(称为事件)&#xff0c;提供一种组合匹配的…

Python完善APC netbotz 250报告功能实现主动式运维。

首先介绍一下APC netbotz 250, 这是施耐德推出的一款机架式监控主机&#xff0c;能够对所有IT环境进行经济有效而且灵活的监控&#xff0c;号称APC史上性价比最高的环境监测方案&#xff0c;这可不是我吹的&#xff0c;是APC官网的介绍&#xff0c;可参考下面的官网截图。 我们…

【原创】VMware创建子网,并使用软路由获得访问互联网的能力,并通过静态路由让上层网络访问位于虚拟机的子网

前言 一看标题就很离谱&#xff0c;确实内容也有点复杂&#xff0c;我的初衷是为后面搞软路由做准备&#xff0c;先通过VMware进行可行性验证&#xff0c;确定方案是否可行&#xff0c;再做下一步的计划。结论当然可以的&#xff0c;能通能访问&#xff0c;强的不行。 网络拓…

重大进展:国产200层存储芯片实现量产,超越国际领先企业

近日&#xff0c;中国芯片技术领域迎来了一项历史性突破&#xff1a;200层以上的存储芯片率先实现量产&#xff0c;这一成就不仅超越了国外存储芯片巨头&#xff0c;更预示着中国有望成为全球行业的领军者。 后起之秀&#xff0c;鱼跃龙门 在这场技术的赛跑中&#xff0c;中国…

“死“社群先不要扔,想办法激活一下,隔壁的运营都馋哭了

私域运营已成为当下很多企业寻求增长的标配。在这过程中&#xff0c;社群运营就是极为重要的一个环节。过去我们为了流量&#xff0c;疯狂建群拉人。但建社群容易活跃难&#xff0c;活跃一段时间后&#xff0c;社群会越来越安静。 不仅如此&#xff0c;群主和管理员也渐渐疏于…

行为型设计模式—迭代器模式

迭代器模式&#xff1a;也叫作游标模式&#xff0c;能在不暴露复杂数据结构内部细节的情况下遍历其中所有的元素。在迭代器的帮助下&#xff0c; 客户端可以用一个迭代器接口以相似的方式遍历不同集合中的元素。 当集合背后为复杂的数据结构&#xff0c;且希望对客户端隐藏其复…

双非本科准备秋招(12.2)—— 力扣栈与队列

复习一下栈和队列的基础知识&#xff0c;刷几道题上上手。 1、102. 二叉树的层序遍历 广度优先遍历嘛&#xff0c;每次拓展一个新结点&#xff0c;就把新结点加入队列&#xff0c;这样遍历完队列中的元素&#xff0c;顺序就是层序遍历。 class Solution {public List<Lis…

分布式搜索引擎_学习笔记_3

分布式搜索引擎03 0.学习目标 1.数据聚合 **聚合&#xff08;aggregations&#xff09;**可以让我们极其方便的实现对数据的统计、分析、运算。例如&#xff1a; 什么品牌的手机最受欢迎&#xff1f;这些手机的平均价格、最高价格、最低价格&#xff1f;这些手机每月的销售…

91 C++对象模型探索。RTTI运行时类型识别回顾 与 存储位置介绍

一&#xff0c;RTTI 运行时类型识别&#xff0c;简单回顾 C运行时类型识别RTTI&#xff0c;要求父类这种必须 至少有一个虚函数&#xff0c;如果父类中没有虚函数&#xff0c;那么得到的RTTI就不准确&#xff1b; RTTI就可以在执行期间查询一个多态指针&#xff0c;或者多态应…

C++:第十四讲动态规划初步

每日C知识 想要在做C小游戏里实现等待效果&#xff0c;可以用Sleep。 Sleep函数可以使计算机程序&#xff08;进程&#xff0c;任务或线程&#xff09;进入休眠&#xff0c;使其在一段时间内处于非活动状态。 一般需要头文件windows.h。 注意"Sleep"首字母要大写…