【JS逆向实战-入门篇】某gov网站加密参数分析与Python算法还原

文章目录

  • 1. 写在前面
  • 2. 请求分析
  • 3. 断点分析
  • 4. 算法还原

【作者主页】:吴秋霖
【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作!
【作者推荐】:对JS逆向感兴趣的朋友可以关注《爬虫JS逆向实战》,对分布式爬虫平台感兴趣的朋友可以关注《分布式爬虫平台搭建与开发实战》
还有未来会持续更新的验证码突防、APP逆向、Python领域等一系列文章

1. 写在前面

  这是一个GOV的站,但是可能算是最最最最简单那一梯队级别的!当然我说的只是参数这一块,其他未知的风控套餐也许并未浮现出来,开始本期的参数加密分析~

分析目标

aHR0cDovL3R6eG0uanh6d2Z3dy5nb3YuY24vaWNpdHkvaXByby9vcGVuL3B1YmxpY2l0eQ==


在这里插入图片描述

2. 请求分析

打开网站,F12监听一下请求,正常请求接口返回如下:

在这里插入图片描述

这里使用Replay XHR或者把请求信息Curl到本地都可以,重新构建请求提交一次,可以看到得到响应内容如下,是失败的:

在这里插入图片描述

为什么会失败?问题出现在请求提交的参数中,这些参数每次请求都是动态变化的,我们需要实现数据采集就必须在请求之前把参数值计算出来,再携带参数提交请求,如下所示:

在这里插入图片描述

3. 断点分析

知道上面的参数是请求动态变化的,现在我们需要从JS代码层面去定位到生成参数的核心代码,这里单搜几个参数,会比较麻烦,因为没有什么特征去定位的话,一搜一大堆!

我这里用的XHR断点,断点停住后在当前JS代码中搜索参数,这里搜索参数不能单搜一个s或者t,加一个=,因为在URL中参数必然有赋值操作,代码2000多行,带=参数搜索有20多个,幸运的是翻一下就找到了可疑之处,在此位置打上断点刷新如下所示:

在这里插入图片描述

sig是s参数的值,tkey是o参数的值,t即t参数的值,如下所示:
在这里插入图片描述

4. 算法还原

接下来将主要参数生成的网站内原生JS代码扣了下来,如下:

var curUrl = this.url + "/" + this.action + "/" + type;
if (this.isApiV2) {
    var sig = "";
    var chars = "0123456789abcdef";
    if (!LEx.isNotNull(__signature)) {
        var curTime = parseInt(Math.random() * (9999 - 1000 + 1) + 1000) + "" + Date.parse(new Date());
        sig = chars.charAt(parseInt(Math.random() * (15 - 15 + 1) + 10)) + chars.charAt(curTime.length) + "" + curTime;
    } else {
        sig = __signature;
    }

    var key = "";
    var keyIndex = -1;
    for (var i = 0; i < 6; i++) {
        var c = sig.charAt(keyIndex + 1);
        key += c;
        keyIndex = chars.indexOf(c);
        if (keyIndex < 0 || keyIndex >= sig.length) {
            keyIndex = i;
        }
    }

    var timestamp = parseInt(Math.random() * (9999 - 1000 + 1) + 1000) + "_" + key + "_" + Date.parse(new Date());

    var tkey = "";
    var tkeyIndex = -1;
    for (var i = 0; i < 6; i++) {
        var c = timestamp.charAt(tkeyIndex + 1);
        tkey += c;
        tkeyIndex = chars.indexOf(c);
        if (tkeyIndex < 0 || tkeyIndex >= timestamp.length) {
            tkeyIndex = i;
        }
    }

    var t = timestamp;
    //LEx.azdg.encrypt(timestamp,key);
    t = t.replace(/\+/g, "_");
    curUrl += "?s=" + sig;
    curUrl += "&t=" + t;
    curUrl += "&o=" + tkey;
}

根据上面的JS代码,我们现在需要稍微的做一下修改进行还原!this.isApiV2为true即可!为什么是true,在代码还原跟手补环境中,都是需要分析代码的,可以在控制台或者断点日志处查看某些参数、变量的结果,然后还原替换到代码中,不然大部分JS代码你扣下来都是无法运行的!

if (!LEx.isNotNull(__signature))这里的条件分支可以直接去除,保留下面sig的重新计算代码就可以,修改后代码如下所示:

import random
import time

def generate_key(sig):
    chars = "0123456789abcdef"
    key = ""
    keyIndex = -1

    for _ in range(6):
        c = sig[keyIndex + 1]
        key += c
        keyIndex = chars.index(c) if c in chars else keyIndex
        if keyIndex < 0 or keyIndex >= len(sig):
            keyIndex = _

    return key

def generate_timestamp():
    chars = "0123456789abcdef"
    cur_time = str(int(random.uniform(1000, 9999))) + str(int(time.time()))

    sig = chars[int(random.uniform(10, 15))] + chars[len(cur_time)] + cur_time
    key = generate_key(sig)

    timestamp = str(int(random.uniform(1000, 9999))) + "_" + key + "_" + str(int(time.time()))
    tkey = generate_key(timestamp)

    t = timestamp.replace("+", "_")

    payload = {'s': sig, 't': t, 'o': tkey}
    return payload

if __name__ == "__main__":
    result = generate_timestamp()
    print(result)

我这里的话是使用Python进行还原的,generate_key函数接收一个字符串sig作为参数,表示一个生成的签名。在函数中,使用了一个字符集chars,其中包含了十六进制数字0-9和小写字母a-f

函数迭代了六次,每次都从sig中取一个字符,然后使用该字符的索引生成一个密钥

generate_timestamp函数生成了一个包含签名、时间戳和密钥的字典作为结果!使用random.uniform生成一些随机数和当前时间来构建签名和时间戳

JS与Python代码测试如下所示:

在这里插入图片描述

在这里插入图片描述

  好了,到这里又到了跟大家说再见的时候了。创作不易,帮忙点个赞再走吧。你的支持是我创作的动力,希望能带给大家更多优质的文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/361109.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一分钟在SpringBoot项目中使用EMQ

先展示最终的结果: 生产者端: RestController RequiredArgsConstructor public class TestController {private final MqttProducer mqttProducer;GetMapping("/test")public String test() {User build User.builder().age(100).sex(1).address("世界潍坊渤…

【C项目】顺序表

简介&#xff1a;本系列博客为C项目系列内容&#xff0c;通过代码来具体实现某个经典简单项目 适宜人群&#xff1a;已大体了解C语法同学 作者留言&#xff1a;本博客相关内容如需转载请注明出处&#xff0c;本人学疏才浅&#xff0c;难免存在些许错误&#xff0c;望留言指正 作…

spark-cannot resolve overloaded method

使用split方法&#xff0c;出现错误&#xff1a;cannot resolve overloaded method 解决方法:那个regex应该是自动生成&#xff0c;所以split括号中输入空引号即可。 入门学习人的愚笨&#xff0c;也要继续坚持&#xff0c;加油&#xff01;

R语言基础学习-02 (此语言用途小众 用于数学 生物领域 基因分析)

变量 R 语言的有效的变量名称由字母&#xff0c;数字以及点号 . 或下划线 _ 组成。 变量名称以字母或点开头。 变量名是否正确原因var_name2.正确字符开头&#xff0c;并由字母、数字、下划线和点号组成var_name%错误% 是非法字符2var_name错误不能数字开头 .var_name, var.…

CISAW和CISP-PTE证书选择指南

&#x1f4e3;在信息安全领域&#xff0c;选择合适的证书可以为你的职业生涯增添光彩。很多从事信息渗透行业的朋友经常讨论CISP-PTE和CISAW之间的选择问题。今天就从4个方面带你详细了解这两张证书&#xff0c;帮你做出明智的选择&#xff01; 1️⃣证书的行业前景 &#x1f4…

八斗学习笔记

1 初始环境安装 Anaconda安装(一款可以同时创建跟管理多个python环境的软件) https://blog.csdn.net/run_success/article/details/134656460 Anaconda创建一个新python环境(安装人工智能常用的第三方python包&#xff0c;如&#xff1a;tensorflow、keras、pytorch) https://…

k8s的operator基石:controller-runtime源码解析

写在之前 今天开始开更controller-runtime的源码阅读&#xff0c;笔者建议大家在阅读前了解以下知识&#xff0c;可能会帮助大家更好的理解源码逻辑。 1.client-go的基础使用 2. 使用kubebuilder搭建一个简单的controller-runtime环境 3.informer的基本思想 1.源码环境搭建 参…

热仿真中稳态与瞬态的区别

对于热仿真&#xff0c;根据是否随时间变化&#xff0c;可分为稳态&#xff08;steady&#xff09;仿真和瞬态&#xff08;transient&#xff09;仿真两类。 从数学计算的角度&#xff0c;所谓稳态是指物理量不随时间变化的定常过程&#xff0c;即计算域中所有物理量均满足关系…

鸿蒙会取代Android吗?听风就是雨

现在说取代还谈不上&#xff0c;毕竟这需要时间。安卓作为全球第一的手机操作系统&#xff0c;短时间内还无法取代。持平iOS甚至超过iOS有很大可能&#xff0c;最终会呈现“三足鼎立”有望超过安卓基数。 作为全新的鸿蒙操作系统&#xff0c;其现在已经是全栈自研底座。按照鸿…

讯飞星火V3.5发布,一场大模型的奇幻之旅(深度体验讯飞星火V3.5)

在去年的人工智能领域&#xff0c;大模型无疑是最炙手可热的技术话题。其强大的数据处理和深度学习能力&#xff0c;为众多领域带来了革命性的变革。而其中&#xff0c;讯飞星火表现尤为出色&#xff0c;成为了行业的翘楚&#xff0c;得到了大量的用户认可&#xff0c;其中&…

负载均衡下的webshell上传+nginx解析漏洞

负载均衡下的webshell上传 一&#xff0c;负载均衡下webshell上传的四大难点 难点一&#xff1a;需要在每一台节点的相同位置上传相同内容的webshell 我们需要在每一台节点的相同位置都上传相同内容的 WebShell一旦有一台机器上没有&#xff0c;那么在请求轮到这台机器上的时…

【Linux】线程池的简易实现(懒汉模式)

文章目录 前言一、懒汉方式1.普通模式1.线程安全模式 二、源代码1.Task.hpp(要执行的任务)2.ThreadPool.hpp(线程池)3.Main.cpp 前言 线程池: 一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监…

【Qt】—— Qt Creator 创建项目

目录 &#xff08;一&#xff09;Qt Creator概览 &#xff08;二&#xff09;使⽤Qt Creator新建项⽬ &#xff08;一&#xff09;Qt Creator概览 从开始菜单或者快捷⽅式打开Qt Creator集成开发环境&#xff0c;启动之后看到类似下⾯的界⾯&#xff1a; 【解释说明】 菜单栏…

一体化设计:兼容多种OS系统Linux网关楼宇DDC

在工业物联网&#xff08;IIoT&#xff09;和智能建筑领域&#xff0c;钡铼网关具备高度灵活性与强大计算能力的边缘网关产品正逐渐成为推动行业智能化转型的关键要素。本文将详细介绍的基于Linux系统的4G工业智能网关&#xff0c;不仅拥有NXP i.MX8M Mini四核64位处理器的强大…

容器算法迭代器初识

#include<iostream> using namespace std; #include<vector> //vetor容器存放内置数据类型 void test01() {//创建了一个vector容器&#xff0c;数组 vector<int> v;//向容器中插入数据v.push_back (10);//尾插 v.push_back (20);v.push_back (30);v.push_ba…

Springboot使用数据库连接池druid

springboot框架中可以使用druid进行数据库连接池&#xff0c;下面介绍druid在springboot中使用和参数配置介绍。 数据库连接池&#xff08;Druid&#xff09;是一种用于管理数据库连接的机制&#xff0c;其工作原理和常见使用方法如下&#xff1a; 原理&#xff1a;数据库连接…

异步任务的一些思考

前言 XXL-Job部署教程 项目中&#xff0c;必然少不了数据的导入导出&#xff0c;针对数据的导入导出简单复盘一下。 为了不占用资源消耗时间&#xff0c;影响用户体验&#xff0c;大量数据的导入导出一般都是异步执行 导入的时候&#xff0c;如果数据量很大&#xff0c;一次…

C#使用RabbitMQ-4_路由模式(直连交换机)

简介 RabbitMQ中的路由模式是一种根据Routing Key有条件地将消息筛选后发送给消费者的模式。在路由模式中&#xff0c;生产者向交换机发送消息时&#xff0c;会指定一个Routing Key。交换机接收生产者的消息后&#xff0c;根据消息的Routing Key将其路由到与Routing Key完全匹…

Centos7——下载——安装

解释 CentOS 7是CentOS项目发布的开源类服务器操作系统&#xff0c;于2014年7月7日正式发布。CentOS 7是一个企业级的Linux发行版本&#xff0c;它源于RedHat免费公开的源代码进行再发行。CentOS 7内核更新至3.10.0、支持Linux容器、支持Open VMware Tools及3D图像即装即用、支…

代码随想录算法训练营第二二天| 二叉搜索树的最近公共祖先、二叉搜索树中的插入操作、删除二叉搜索树中的节点

目录 二叉搜索树的最近公共祖先二叉搜索树中的插入操作删除二叉搜索树中的节点普通二叉树的删除方式 LeetCode 235. 二叉搜索树的最近公共祖先 LeetCode 701.二叉搜索树中的插入操作 LeetCode 450.删除二叉搜索树中的节点 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到…