【乳腺肿瘤诊断分类及预测】基于LVQNN学习向量量化神经网络

课题名称:基于LVQ神经网络的乳腺肿瘤诊断(类型分类)

版本日期:2023-03-10

运行方式: 直接运行0501_LVQ0501.m 文件即可

代码获取方式:私信博主或QQ:491052175

模型描述:

威斯康辛大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10 个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度〉,这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性的。

算法流程:

1. 数据采集:

将乳腺肿瘤病灶组织的细胞核显微图像的1 0 个量化特征作为网络的输入,良性乳腺肿瘤和恶性乳腺肿瘤这两种类别作为网络的输出。共有乳腺癌数据集共包括569 个病例,其中, 良性357 例, 恶性212 例。随机选取500 组数据作为训练集,剩余69 组作为测试集。每个病例的一组数据包括采样组织中各细胞核的10 个特征量的平均值、标准差和最坏值(各特征的3 个最大数据的平均值)共30 个数据。数据文件中每组数据共分32 个字段,第l个字段为病例编号;第2 个字段为确诊结果, B 为良性, M 为恶性(数据中1为良性,2为恶性);第3~ 12 个字段是该病例肿瘤病灶组织的各细胞核显微图像的10 个量化特征的平均值;第1 3 ~ 22 个字段是相应的标准差;第2 3 ~32 个字段是相应的最坏值。 (打开data.mat文件可以看仿真数据)

2. 网络创建:

数据采集后,利用Matlab自带的神经网络工具箱中的函数newlvq()可以构建一个LVQ神经网络,

3. 网络训练:

网络创建完毕后,若需要,还可以对神经网络的参数进行设置和修改,将训练集的500个病例的数据输入网络,便可以对网络进行训练

4. 网络仿真:

网络通过训练后,将测试数据集的69组的10个量化特征数据输入到网络里,便可以得到对应的输出(即分类)

5. 结果分析

通过对网络仿真结果的分析,可以得到误诊率(包括良心被误诊为恶性及恶性被误诊为良性),从而可以对该方法的可行性进行评价

特殊说明:

神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值。

Matlab仿真结果:

基于LVQNN的乳腺肿瘤诊断分类与预测的仿真结果

LVQNN结构

LVQNN训练误差随着迭代次数的变化

LVQNN的分类预测结果

LVQNN的分类预测误差

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/359918.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[AG32VF407]国产MCU+FPGA Verilog编写控制2路gpio输出不同频率方波实验

视频讲解 [AG32VF407]国产MCUFPGA Verilog编写控制2路gpio输出不同频率方波实验 实验过程 根据原理图,选择两个pin脚作为输出 修改VE文件,clk选择PIN_OSC,使用内部晶振8Mhz,gpio使用PIN_51和52,pinout是数组 添加pll…

Linux下qemu的安装并搭建虚拟arm环境(带helloworld测试)【超详细】

qemu的安装并搭建虚拟arm环境 1、准备工作1.1 安装交叉汇编工具1.2 编译内核kernel1.3 u-boot编译1.4 制作根文件系统-busybox 2、启动qemu(arm)3、helloworld测试 1、准备工作 1.1 安装交叉汇编工具 交叉编译器的作用就不需要详细解释了,因…

2024/1/28CSS学习:基础认知;选择器;文本样式

一、基础认知 1.1层叠样式表 作用:样式美观,给Html美化 1.2语法规则 写在style标签里面 选择器——找标签使用 属性名:属性值; 2.1CSS引入方式 1.内嵌式 CSS 写在style标签中 提示:style标签虽然可以写在页面任意位置&#…

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型

目录 往期精彩内容: 前言 1 快速傅里叶变换FFT原理介绍 第一步,导入部分数据 第二步,故障信号可视化 第三步,故障信号经过FFT可视化 2 轴承故障数据的预处理 2.1 导入数据 2.2 制作数据集和对应标签 3 交叉注意力机制 …

C++初阶:入门泛型编程(函数模板和类模板)

大致介绍了一下C/C内存管理、new与delete后:C初阶:C/C内存管理、new与delete详解 我们接下来终于进入了模版的学习了,今天就先来入门泛型编程 文章目录 1.泛型编程2.函数模版2.1概念2.2格式2.3函数模版的原理2.4函数模版的实例化2.4.1隐式实例…

新书速览|Python数据科学应用从入门到精通

系统教授数据科学与Python实战,涵盖线性回归、逻辑回归、决策树、随机森林、神经网 本书内容 随着数据存储、数据处理等大数据技术的快速发展,数据科学在各行各业得到广泛的应用。数据清洗、特征工程、数据可视化、数据挖掘与建模等已成为高校师生和职场…

教你如何轻松浏览OSGB倾斜摄影三维模型

倾斜摄影测量技术发展至今,已经属于一项成熟度很高的技术。但对于倾斜摄影三维模型数据如何展示,如何与业务进行结合一直是行业比较苦恼的事情。下面我会教大家通过四维轻云实现倾斜摄影三维模型数据的编辑、展示及分享。 一、平台登录 在四维轻云官网…

鸿蒙系统扫盲(七):勘误补充总结,收个尾

这是笔者鸿蒙扫盲系列的最后一篇了,准备对过去的六篇扫盲系列文章,错误的地方做一些勘误,并且补充更新一些朋友们感兴趣的知识,最后收个尾。 1.勘误,编译型语言和解释型语言 在鸿蒙系统扫盲(五&#xff0…

32GPIO输入LED闪烁蜂鸣器

一.GPIO简介 所有的GPIO都挂载到APB2上,每个GPIO有16个引脚 内核可以通过APB2对寄存器进行读写,寄存器都是32位的,但每个引脚端口只有16位 驱动器用于增加信号的驱动能力 二.具体…

如何将数据转化为可操作的业务洞察_光点科技

在数字化的商业环境中,企业被海量的数据所包围。从社交媒体互动、销售交易记录到客户反馈,每一项数据都蕴含着潜在的业务价值。然而,数据本身并不能直接为企业带来改变,它需要被转化为可行的业务洞察,才能指导实际的决…

来聊聊SSL证书申请流程

第一步:选择合适的SSL证书类型 在申请SSL证书之前,您需要选择适合您网站需求的SSL证书类型。一般分为单域名证书、多域名证书和通配符证书等。根据您的网站结构和需求选择合适的证书类型。 第二步:准备必要的证书申请材料 在申请SSL证书时&…

用Python库pillow处理图像

入门知识 颜色。如果你有使用颜料画画的经历,那么一定知道混合红、黄、蓝三种颜料可以得到其他的颜色,事实上这三种颜色就是美术中的三原色,它们是不能再分解的基本颜色。在计算机中,我们可以将红、绿、蓝三种色光以不同的比例叠加…

类和对象 第六部分 继承 第一部分:继承的语法

一.继承的概念 继承是面向对象的三大特性之一 有些类与类之间存在特殊的关系,例如下图: 我们可以发现,下级别的成员除了拥有上一级的共性,还有自己的特性,这个时候,我们可以讨论利用继承的技术,…

LeetCode.2670. 找出不同元素数目差数组

题目 题目链接 分析 一种暴力的方法,枚举数组所有数字,分别计算当前元素前面不同的元素和后面不同的元素,然后相减即可。这样的话太暴力,前缀和后缀也需要分别遍历:O(N*2)了。 我们来优化一下: 根据这种…

【HarmonyOS应用开发】UIAbility实践第一部分(五)

一、UIAbility概述 1、UIAbility是一种包含用户界面的应用组件,主要用于和用户进行交互。UIAbility也是系统调度的单元,为应用提供窗口在其中绘制界面。 2、每一个UIAbility实例,都对应于一个最近任务列表中的任务。 3、一个应用可以有一个UI…

阿里云服务器租用价格 2024年新版活动报价及租用收费标准参考

阿里云服务器租用价格是多少?阿里云服务器价格由云服务器配置、实例规格、带宽等组成,进入2024年,阿里云继续推出各种云服务器优惠政策。轻量应用服务器2核2G 61元1年,每天只需0.16元,2核4G 165元1年,每天不…

IDEA:git 回滚本地提交-git 选择 Reset Current Branch to

前言 回滚提交到本地但是还没有 Push 上去的提交 选择我们要回滚的节点,然后点击 git 选择 Reset Current Branch to… 再选择 Hard 。当我们点击 Reset 的时候,代码就会回滚到单前选中的这个版本

Centos 7.9 在线安装 VirtualBox 7.0

1 访问 Linux_Downloads – Oracle VM VirtualBox 2 点击 ​the Oracle Linux repo file 复制 内容到 /etc/yum.repos.d/. 3 在 /etc/yum.repos.d/ 目录下新建 virtualbox.repo,复制内容到 virtualbox.repo 并 :wq 保存。 [rootlocalhost centos]# cd /etc/yum.rep…

Redis -- 常用数据结构,认识数据类型和编码方式

"人生就像骑自行车,要保持平衡,就必须保持前进。" — 爱因斯坦 说到数据结构,或许就能想到哈希表,列表集合等数据结构。对于redis来说对应的key的value的形式也可以是这些数据结构,如下: 针对上面…

vxe-table3.0的表格树如何做深层查找,返回搜索关键字的树形结构

vxe-table2.0版本是提供深层查找功能的,因为他的数据源本身就是树形结构,所以深层查找查询出来也是树形结构。 但是vxe-table3.0版本为了做虚拟树功能,将整个数据源由树形垂直结构变成了扁平结构,便不提供深层查询功能&#xff0c…