Linux性能优化实践——CPU上下文

CPU上下文切换

Linux是一个多任务操作系统,它支持远大于CPU数量的任务同时运行。这些任务不是真正意义上的并行运行,而是系统在短时间内,将CPU轮流分配给它们,造成任务同时运行的错觉。
CPU需要知道任务从哪里加载,从哪里开始运行是通过设置好的CPU寄存器和程序计数器(Program Counter,PC)完成的。

  • CPU寄存器:CPU内置的容量小、但速度极快的内存;
  • 程序计数器:用来存储CPU正在执行的指令位置、或者即将执行的下一条指令位置。它们都是CPU在运行任何任务前,必须的依赖环境,因此也叫作CPU上下文。
    在这里插入图片描述
    CPU上下文切换,就是先把前一个任务的CPU上下文(CPU寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。
    进程和线程是最常见的任务,除此之外,还有硬件通过出发信号,会导致中断处理程序的调用,也是一种常见的任务。
    根据任务的不同,CPU上下文切换就可以分为几个不同的场景,即进程上下文切换、线程上下文切换以及中断上下文切换。

进程上下文切换。

Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,CPU 特权等级的 Ring 0 和 Ring 3。

  • 内核空间(Ring 0)具有最高权限,可以直接访问所有资源;
  • 用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。
    在这里插入图片描述
    进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。

从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。

  1. 系统调用的过程有没有发生 CPU 上下文的切换呢?

答案自然是肯定的。

CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。而系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。所以,一次系统调用的过程,其实是发生了 两次 CPU 上下文切换。

系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。这跟我们通常所说的进程上下文切换是不一样的:

  • 进程上下文切换,是指从一个进程切换到另一个进程运行。
  • 而系统调用过程中一直是同一个进程在运行
    所以,系统调用过程通常称为特权模式切换,而不是上下文切换。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免。
  1. 那么,进程上下文切换跟系统调用又有什么区别呢?

首先,进程是由内核来管理和调度的,进程的切换只能发生在内核态 。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。

因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。

如下图所示,保存上下文和恢复上下文的过程并不是“免费”的,需要内核在 CPU 上运行才能完成
在这里插入图片描述
每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也正是上一节中我们所讲的,导致平均负载升高的一个重要因素。

Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。

  1. 什么时候会切换进程上下文?

进程切换时才需要切换上下文,换句话说,只有在进程调度的时候,才需要切换上下文。Linux 为每个 CPU 都维护了一个就绪队列,将活跃进程(即正在运行和正在等待CPU 的进程)按照优先级和等待 CPU 的时间排序,然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。

  1. 进程在什么时候才会被调度到CPU上运行呢?

就是进程执行完终止了,它之前使用的 CPU 会释放出来,这个时候再从就绪队列里,拿一个新的进程过来运行。其实还有很多其他场景,也会触发进程调度,在这里我给你逐个梳理下。

其一,为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。

其二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行。

其三,当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。

其四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。

其五,发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

线程上下文切换

线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位

所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。可以这么理解线程和进程:

当进程只有一个线程时,可以认为进程就等于线程。

当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。

另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的

线程的上下文切换其实就可以分为两种情况:

第一种,前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。

第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据

同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。

中断上下文切换

为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。

中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。

怎么查看系统的上下文切换情况

使用 vmstat (vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率、内存使用、虚拟内存交换情况、IO读写情况)这个工具,来查询系统的上下文切换情况,

vmstat安装
Manually Installing the vmstat collector

未完待续

参考链接:
1、https://zhuanlan.zhihu.com/p/406497025

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/35974.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux调优–I/O 调度器

Linux 的 I/O 调度器是一个以块式 I/O 访问存储卷的进程,有时也叫磁盘调度器。Linux I/O 调度器的工作机制是控制块设备的请求队列:确定队列中哪些 I/O 的优先级更高以及何时下发 I/O 到块设备,以此来减少磁盘寻道时间,从而提高系…

QC51XX---I2c使用

QCC51XX---系统学习目录_嵌入式学习_force的博客-CSDN博客 今天我们聊聊I2C的使用。在开发过程中多多少少会加入一些外围传感器可以给用户带来更好的使用体验。例如,利用接近传感器识别戴上耳机和取下耳机,从而去自动暂停播放音乐,或接听转移通话。又例如,用触摸或敲击替代…

软件安全技术复习内容

软件安全技术 边复习边写的,有错误及时指正第一章 软件安全概述零日漏洞安全威胁分类CIA安全基本属性PDRR模型软件安全的主要方法和技术基本方法主要技术 第二章 软件漏洞概述概念软件漏洞成因分析软件漏洞分类基于漏洞成因的分类基于漏洞利用位置的分类基于威胁类型…

基于Stable Diffusion的2D游戏关卡生成【实战】

接下来的几篇文章将与常规主题有所不同(这是在从事通用机器人技术的职业中吸取的教训)。 相反,我决定利用我的一些新空闲时间 1 边做边学,并使用所有酷孩子都在谈论的一些很酷的新 ML。 推荐:用 NSDT设计器 快速搭建可…

第五章 运输层【计算机网络】

第五章 运输层【计算机网络】 前言推荐第五章 运输层5.1运输层协议概述5.1.1 进程之间的通信5.1.2运输层的两个主要协议5.1.3运输层的端口 5.2用户数据报协议UDP5.2.1UDP概述5.2.2UDP的首部格式 5.3传输控制协议TCP概述5.3.1TCP最主要的特点5.3.2TCP的连接 5.4可靠传输的工作原…

Node中express路由基本使用

1.路由的基本使用 //引入express const expressrequire("express") //创建路由 const appexpress() //规定路由的请求方法 app.get(/,(req,res)>{res.end("hello express") }) //启动路由,并且端口为9000 app.listen(9000,()>{console.l…

通俗易懂讲解CPU、GPU、FPGA的特点

1. CPU vs GPU 大家可以简单的将CPU理解为学识渊博的教授,什么都精通;而GPU则是一堆小学生,只会简单的算数运算。可即使教授再神通广大,也不能一秒钟内计算出500次加减法。因此,对简单重复的计算来说,单单一…

注册HTTPS证书

注册HTTPS证书 1. 从ACME获取脚本文件2. 运行shell脚本3. 安装socat4. 把acme.sh这个脚本添加到环境变量软连接直接添加到.bashrc 5. 注册ACME账户6. 注册证书6.1. 首先把80端口打开6.2. 申请证书 7. 部署到Flask上 1. 从ACME获取脚本文件 wget https://get.acme.shmv index.ht…

多元分类预测 | Matlab 鲸鱼算法(WOA)优化xgboost的分类预测模型,多特征输入模型,WOA-xgboost分类预测

文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元分类预测 | Matlab 鲸鱼算法(WOA)优化xgboost的分类预测模型,多特征输入模型,WOA-xgboost分类预测 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可…

python接口自动化(二十三)--unittest断言——上(详解)

简介 在测试用例中,执行完测试用例后,最后一步是判断测试结果是 pass 还是 fail,自动化测试脚本里面一般把这种生成测试结果的方法称为断言(assert)。用 unittest 组件测试用例的时候,断言的方法还是很多的…

最新AI创作系统V5.0.2+支持GPT4+支持ai绘画+实时语音识别输入+文章资讯发布功能+用户会员套餐

最新AI创作系统V5.0.2支持GPT4支持ai绘画实时语音识别输入文章资讯发布功能用户会员套餐! AI创作系统一、源码系统介绍二、AI创作系统程序下载三、安装教程四、主要功能展示五、更新日志 AI创作系统 1、提问:程序已经支持GPT3.5、GPT4.0接口 2、支持三种…

python爬虫_django+vue+echarts可视化查询所有CSDN用户质量分

文章目录 ⭐前言⭐ 效果⭐django简介⭐vue3简介⭐vue引入echarts ⭐前后分离实现💖 django代码层💖 vue3代码层结束 ⭐前言 大家好,我是yma16,本文分享关于前后分离djangovueecharts可视化查询CSDN用户质量分。 该系列文章&#…

Elasticsearch集群

单点的问题 单台机器存储容量有限,无法实现高存储。 单服务器容易出现单点故障,无法实现高可用。 单服务的并发处理能⼒有限,无法实现高并发。 集群的结构 数据分片:把数据拆分成多份,每一份存储到不同机器节点&a…

【C++修炼之路】string 概述

👑作者主页:安 度 因 🏠学习社区:StackFrame 📖专栏链接:C修炼之路 文章目录 一、string 为何使用模板二、string 类认识1、构造/析构/赋值运算符重载2、容量操作3、增删查改4、遍历5、迭代器6、非成员函数…

P1 第一章 电路模型与电路定律

1、什么是电路模型? 实际电路与电路模型间的关系?建立在相同的电路理论基础之上。 实际电路定义:由电工设备和电气器件,按照预期目的连接构成的,电流的通路。 实际电路的功能:能量方面,可以传输…

Vivado 下 呼吸灯实验

目录 Vivado 下 呼吸灯实验 1、实验简介 2、实验环境 3、实验任务 4、硬件设计 5、程序设计 5.1、呼吸灯代码如下: 5.2、添加约束文件 .xdc 5.3、下载验证 Vivado 下 呼吸灯实验 呼吸灯最早由苹果公司发明并应用于笔记本睡眠提示上,其一经展出&…

MySQl数据库第五课 --------在SQl的简单命令--------学习学习

作者前言 欢迎小可爱们前来借鉴我的gtiee秦老大大 (qin-laoda) - Gitee.com ———————————————————————————— 目录 数据库的简单介绍 1.数据储存 2.数据库类型 (1).关系型数据库 (2).非关系型数据库…

第四章 网络层【计算机网络】

第四章 网络层【计算机网络】 前言推荐第四章 网络层4.1 网络层的几个重要概念4.1.1 网络层提供的两种服务4.1.2 网络层的两个层面例-路由表的建立 4.2网际协议IP4.2.1 虚拟互连网络4.2.2 IP地址例-分类地址练习例-子网划分例-聚合超网4.2.3IP地址与MAC地址4.2.4地址解析协议AR…

elk高并发架构

1.前言 普通的elk架构只适合数据量小的情景,而且也不安全,在瞬时数据量大的情况下可能会导致logstash崩溃,从而导致数据的丢失,对于数据安全有较高要求,可以在架构中加入消息队列,既可以防止瞬时的大流量并…

软件UI工程师的职责模板

软件UI工程师的职责模板1 职责: 1.负责产品的UI视觉设计(手机软件界面 网站界面 图标设计产品广告及 企业文化的创意设计等); 2.负责公司各种客户端软件客户端的UI界面及相关图标制作; 3.设定产品界面的整体视觉风格; 4.为开发工程师创建详细的界面说明文档&…