IP 层转发分组的过程

目录

IP 层转发分组的过程

1.1  基于终点的转发

1.2 最长前缀匹配

转发表中的 2 种特殊的路由

主机路由 (host route)

默认路由 (default route)

路由器分组转发算法

 1.3 使用二叉线索查找转发表


IP 层转发分组的过程

1.1  基于终点的转发

·分组在互联网中是逐跳转发的。

·基于终点的转发:基于分组首部中的目的地址传送和转发。

·为了压缩转发表的大小, 转发表中最主要的路由是(目的网络地址,下一跳地址) , 而不是(目的地址,下一跳地址)。

·查找转发表的过程就是逐行寻找前缀匹配

主机 H1 发送出的、目的地址是 128.1.2.132 的分组是如何转发的?

·H1 首先检查 128.1.2.132 是否连接在本网络上。

        如果是,则直接交付;否则,就送交路由器 R1。

128.1.2.132 AND 255.255.255.192 = 128.1.2.128     不匹配!

·路由器 R1 收到分组后查找转发表。先检查第 1 行。

·路由器 R1 收到分组后查找转发表。接着检查第 2 行。

        128.1.2.132 AND 255.255.255.128 = 128.1.2.128     匹配!

        进行分组的直接交付(通过路由器 R1 的接口 1)。

1.2 最长前缀匹配

·使用 CIDR 时,在查找转发表时可能会得到不止一个匹配结果

·最长前缀匹配 (longest-prefix matching) 原则:选择前缀最长的一个作为匹配的前缀。

·网络前缀越长,其地址块就越小,因而路由就越具体。

·可以把前缀最长的排在转发表的第 1 行。

路由器 R1 如何转发目的地址是 128.1.2.196 的分组?

·路由器 R1 收到分组后查找转发表。先检查第 1 行。

        128.1.2.196 AND 255.255.255.192 = 128.1.2.192     不匹配!

·路由器 R1 收到分组后查找转发表。接着检查第 2 行。

        128.1.2.196 AND 255.255.255.128 = 128.1.2.128     匹配!

·路由器 R1 收到分组后查找转发表。接着检查第 3 行。

        128.1.2.196 AND 255.255.255.192 = 128.1.2.192     匹配!

问题:R1 从哪个接口向外转发分组?

最长前缀匹配: 选择前缀最长的一个作为匹配的前缀。故选择 接口 0 。

·网络前缀越长,其地址块就越小,路由就越具体(more specific)。

·可以把前缀最长的排在转发表的第 1 行,以加快查表。

转发表中的 2 种特殊的路由

主机路由 (host route)

·又叫做特定主机路由

·是对特定目的主机的 IP 地址专门指明的一个路由。

·网络前缀就是 a.b.c.d/32

·放在转发表的最前面

默认路由 (default route)

·不管分组的最终目的网络在哪里,都由指定的路由器 R 来处理。

·用特殊前缀 0.0.0.0/0 表示。

默认路由举例

只要目的网络不是 N1 和 N2,就一律选择默认路由,把 IP 数据报先间接交付默认路由器 R1,让 R1 再转发给下一个路由器。

路由器分组转发算法

 1.3 使用二叉线索查找转发表

·二叉线索 (binary trie):一种特殊结构的树,可以快速在转发表中找到匹配的叶节点。

·从二叉线索的根节点自顶向下的深度最多有 32 层,每一层对应于 IP 地址中的一位。

·为简化二叉线索的结构,可以用唯一前缀 (unique prefix) 来构造二叉线索。

·为了提高二叉线索的查找速度,广泛使用了各种压缩技术。

用 5 个唯一前缀构成的二叉线索

规则:先检查 IP 地址左边的第一位,如为 0,则第一层的节点就在根节点的左下方;如为 1,则在右下方。然后再检查地址的第二位,构造出第二层的节点。依此类推,直到唯一前缀的最后一位。每个叶节点代表一个唯一前缀。 为检查网络前缀是否匹配,必须使二叉线索中的每一个叶节点包含所对应的网络前缀和子网掩码。

在二叉线索中查找 IP 地址

欢迎一起学习~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/359611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网络异常案例一_RST

本文以及后面几篇会整理输出下以前处理过的一些网络相关的异常 4G定向卡上网问题 问题现象,自研路由器,使用运营商定向的4G卡上网,访问服务器异常,相应的开发同学反馈被服务器拒绝了; 复现问题,同步在cli…

CRF条件随机场学习记录

阅读建议 仔细阅读书[1]对应的序列标注章节,理解该方法面向的问题以及相关背景,然后理解基础的概念。 引言 威胁情报挖掘的相关论文中,均涉及到两部分任务:命名实体识别(Named Entity Recognition,NER&a…

某赛通电子文档安全管理系统 PolicyAjax SQL注入漏洞复现

0x01 产品简介 某赛通电子文档安全管理系统(简称:CDG)是一款电子文档安全加密软件,该系统利用驱动层透明加密技术,通过对电子文档的加密保护,防止内部员工泄密和外部人员非法窃取企业核心重要数据资产,对电子文档进行全生命周期防护,系统具有透明加密、主动加密、智能…

Apollo与微服务架构

前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:https://www.captainbed.cn/z ChatGPT体验地址 文章目录 前言引言:1. 什么是微服务架构?2. 微服务架构的组成要素…

python 标准库random生成随机数

当前版本: Python 3.8.4 文章目录如下 1. random的特点 2. random的用法 2.1. 随机整数 2.2. 随机小数 2.3. 随机元素 2.4. 随机字符串 1. random的特点 random 提供了生成伪随机数的功能,可以用于各种随机相关的操作,如生成随机数、…

《HTML 简易速速上手小册》第6章:HTML 语义与结构(2024 最新版)

文章目录 6.1 语义化标签的重要性6.1.1 基础知识6.1.2 案例 1&#xff1a;使用 <article>, <section>, <aside>, <header>, 和 <footer>6.1.3 案例 2&#xff1a;构建带有嵌套语义化标签的新闻网站6.1.4 案例 3&#xff1a;创建一个带有 <mai…

干货 | 大模型在图数据分析、推荐系统和生物科学中的综合应用

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 图机器学习、推荐系统与大语言模型的融合正成为新的前沿热点。图机器学习通过利用图结构数据&#xff0c;能够有效地捕捉和分析复杂关系和模式。同时&#xff0c;推荐系统正逐步成为我们日常生活的一部分&#…

5G_RACH(一)

什么是RACH RACH 代表 Random Access Channel。这是开机时UE发给eNB的第一条消息。 为什么选择RACH &#xff1f;&#xff08;RACH 的功能是什么&#xff1f; 当你第一次听到RACH或RACH Process这个词时&#xff0c;你脑海中浮现的第一个问题是“为什么是RACH&#xff1f;”…

前端Web开发

安装flask框架 pip install flask 导入flask模块 from flask import Flask 【可能遇到的问题】 出现了如下警告&#xff1a; WARNING: You are using pip version 21.2.4; however, version 22.0.4 is available.You should consider upgrading via the D:\Python\python…

EPSON RC 机器人-第一个程序

创建项目 有机械人且用USB线连接好。可以USB。没有真机的选择 C4 Sample 可以运行程序。 否刚会提示【不能连接到控制器&#xff0c;未安装USB驱动器】 代码 按F5打开运行窗口 再点【开始】 点 【是】&#xff0c;查看运行结果

GMS测试BTSfail-CVE-2022-20451

描述&#xff1a; 项目需要过GMS兼容性测试&#xff0c;BTS这块我们环境没有&#xff0c;送检之后出现了一个BTS的Alert&#xff0c;这个是必须要解决的。下面的warning可以不考虑。 这个是patch问题&#xff0c;根据代理提供的pdf文件找到一个id:为A-235098883的补丁&#xf…

C#,德兰诺依数(Dealnnoy Number)的算法与源代码

1 Dealnnoy Number 德兰诺依数&#xff0c;德兰诺伊数 德兰诺依数是以法国军官、业余数学家亨利德兰诺依&#xff08;Henry Dealnnoy&#xff09;的名字命名。 Henry Dealnnoy 在组合数学中&#xff0c;德兰诺依数描述了从(0,0)到(m,n)的格路问题中&#xff0c; 只允许按照(0…

TensorFlow2实战-系列教程14:Resnet实战1

&#x1f9e1;&#x1f49b;&#x1f49a;TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 1、残差连接 深度学习中出现了随着网络的堆叠效果下降的现象&#xff0c;Resnet使用残…

BTC交易数据是什么样子的

如何储存 交易数据是用字节的形式存储在区块链中&#xff0c;但是我们分析和处理的时候一般使用16进制。另外BTC的数据都是通过小端模式存储的。 16进制&#xff1a;计算机的世界只有2进制&#xff0c;但是为了节省空间已经增加可读性&#xff0c;BTC使用了16进制的形式来保存数…

蓝桥杯 第 1 场 小白入门赛

目录 1.蘑菇炸弹 2.构造数字 3.小蓝的金牌梦 4.合并石子加强版 5.简单的LIS问题 6.期望次数 1.蘑菇炸弹 我们直接依照题目 在中间位置的数进行模拟即可 void solve(){cin>>n;vector<int> a(n1);for(int i1;i<n;i) cin>>a[i];int ans0;for(int i2;i…

氢气泄漏检测仪使用方法:守护安全,从细节开始

随着科技的发展&#xff0c;我们的生活和工作环境中充满了各种潜在的危险。其中&#xff0c;氢气作为一种清洁能源&#xff0c;其使用日益广泛&#xff0c;但同时也带来了泄漏的风险。为了确保我们的安全&#xff0c;了解并正确使用氢气泄漏检测仪至关重要。下面将详细介绍氢气…

Optimism的挑战期

1. 引言 前序博客&#xff1a; Optimism的Fault proof 用户将资产从OP主网转移到以太坊主网时需要等待一周的时间。这段时间称为挑战期&#xff0c;有助于保护 OP 主网上存储的资产。 而OP测试网的挑战期仅为60秒&#xff0c;以简化开发过程。 2. OP与L1数据交互 L1&#xf…

STM32学习笔记二——STM32时钟源时钟树

目录 STM32芯片内部系统架构详细讲解&#xff1a; 1.芯片内部混乱电信号解决方案&#xff1a; 2.时钟树&#xff1a; 1.内部RC振荡器与外部晶振的选择 2. STM32 时钟源 3.STM32中几个与时钟相关的概念 4.时钟输出的使能及其流程 5.时钟设置的基本流程 时钟源——单片机…

上海亚商投顾:创业板指失守1600点 全市场超5000只个股下跌

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日低开低走&#xff0c;深成指跌超2%&#xff0c;创业板指失守1600点&#xff0c;续创年内新低。脑机接…

C语言KR圣经笔记 6.6 表查询 6.7 typedef

6.6 表查询 为了说明结构体的更多方面&#xff0c;本节我们来写一个表查询功能包的内部代码。在宏处理器或编译器的符号表管理例程中&#xff0c;这个代码是很典型的。例如&#xff0c;考虑 #define 语句&#xff0c;当遇到如下行 #define IN 1 时&#xff0c;名称 IN 与其对…