【计算机网络】——TCP协议

📑前言

本文主要是【计算机网络】——传输层TCP协议的文章,如果有什么需要改进的地方还请大佬指出⛺️

🎬作者简介:大家好,我是青衿🥇
☁️博客首页:CSDN主页放风讲故事
🌄每日一句:努力一点,优秀一点

在这里插入图片描述

目录

文章目录

  • 📑前言
  • **目录**
    • TCP首部格式?
      • TCP 和 UDP 的区别
      • 三次握手
      • 为什么是三次握手,而不是其他的握手次数呢?
      • 为什么要三次握手,难道四次或更多次不可以吗?
      • 四次挥手
  • 📑文章末尾


TCP首部格式?

字段的含义

源端口:16比特,写入源端口号,用来标识发送该TCP报文段的应用进程。
目的端口: 占16比特,写入目的端口号,用来标识接收该TCP报文段的应用进程。
序号:32比特,取值范围[0,2^32-1],序号增加到最后一个后,下一个序号就又回到0。指出本TCP报文段数据载荷的第一个字节的序号。
确认号: 占32比特,取值范围[0,2^32-1],确认号增加到最后一个后,下一个确认号就又回到0。指出期望收到对方下一个TCP报文段的数据载荷的第一个字节的序号,同时也是对之前收到的所有数据的确认。若确认号=n,则表明到序号n-1为止的所有数据都已正确接收,期望接收序号为n的数据。
确认标志位ACK: 取值为1时确认号字段才有效;取值为0时确认号字段无效。TCP规定,在连接建立后所有传送的TCP报文段都必须把ACK置1。
校验和: 占16比特,检查范围包括TCP报文段的首部和数据载荷两部分。在计算校验和时,要在TCP报文段的前面加上12字节的伪首部。
紧急指针: 占16比特,以字节为单位,用来指明紧急数据的长度。
填充: 由于选项的长度可变,因此使用填充来确保报文段首部能被4整除(因为数据偏移字段,也就是首部长度字段,是以4字节为单位的)

ACK:

  • 报文中的ACK标志设置为1,表示该报文可以对接收到的报文进行确认。
  • 一般除了第一个请求连接的报文没有设置ACK外,其余报文基本上都设置了ACK,因为携带了ACK的报文需要对接收到的报文进行确认。

SYN:

  • 报文当中的SYN被设置为1,表明该报文是一个连接建立的请求报文。
  • 只有在连接建立阶段,SYN才被设置,正常通信时SYN不会被设置。

FIN:

  • 报文当中的FIN被设置为1,表明该报文是一个连接断开的请求报文。
  • 只有在断开连接阶段,FIN才被设置,正常通信时FIN不会被设置

TCP 和 UDP 的区别

在这里插入图片描述

三次握手

客户端与服务端建立连接的过程称为三次握手。
在这里插入图片描述
三次握手是 TCP 连接的建立过程。在握手之前,主动打开连接的客户端结束 CLOSE(关闭) 阶段,被动打开的服务器也结束 CLOSE(关闭) 阶段,并进入 LISTEN(监听) 阶段。随后进入三次握手阶段:
1.首先客户端向服务器发送TCP连接请求报文段,并等待服务器确认,其中:
●同步位SYN被设置为1, 表明这是一个TCP连接请求报文段。
●序号字段seq被设置了一个初始值x作为TCP客户进程所选择的初始序号。(x 一般取随机数);
●随后客户端进入 SYN-SENT 阶段。
2.服务器接收到客户端发来的 TCP连接请求报文段后,进行确认后结束 LISTEN 阶段,并返回TCP连接请求确认报文段,其中:
●该报文段首部中的同步位SYN和确认位ACK 都设置为1,表明这是一个TCP连接请求确认报文段;
●序号字段seq被设置了一个初始值y,作为TCP服务器进程所选择的初始序号;
●确认号字段ack的值被设置成了x+1,这是对TCP客户进程所选择的初始序号seq的确认,随后服务器端进入 SYN-RCVD 阶段。
3.客户端接收到发送的 TCP连接请求确认报文段后,明确了从客户端到服务器的数据传输是正常的,最后还要向TCP服务器进程发送一个普通的TCP 确认报文段,其中:
●该报文段首部中的确认位ACK被设置为1,表明这是一个普通的TCP确认报文段 。
●序号字段seq 被设置为x+1,这是因为TCP客户进程发送的第一个TCP报文段的序号为x,并且不携带数据,因此第二个报文段的序号为x +1。
●确认号字段ack被设置为y + 1,这是对TCP服务器进程所选择的初始序号的确认。
●随后客户端进入 ESTABLISHED。
4.当服务器端收到来自客户端确认收到服务器数据的报文后,得知从服务器到客户端的数据传输是正常的,从而结束 SYN-RCVD 阶段,进入 ESTABLISHED 阶段,从而完成三次握手。

为什么是三次握手,而不是其他的握手次数呢?

1.防止已失效的连接请求报文段突然又传送到了TCP服务器进程因而导致错误和资源浪费。
●假设采用两报文握手,TCP客户进程发出一个TCP连接请求报文段,但是该报文段由于网络原因滞留了,这必然会造成该报文段的超时重传。
●假设重传的报文段被TCP服务器进程正常接收,TCP服务器进程给TCP客户进程发送一个TCP连接请求确认报文段,并进入连接已建立状态。他们可以相互传输数据,之后可以通过四报文挥手来释放连接,TCP双方都进入了关闭状态。
●一段时间后,失效的TCP连接请求报文段到达了TCP服务器进程,TCP服务器进程随即给TCP客户进程发送TCP连接请求确认报文段并进入连接已建立状态。
●但由于TCP客户进程并没有发起新的TCP连接请求,并且处于关闭状态,因此不会理会该报文段。而TCP服务器进程一直等待TCP客户进程发来数据,这将白白浪费TCP服务器进程所在主机的很多资源。
2.三次握手才能让双方均确认自己和对方的发送和接收能力都正常。
●第一次握手:客户端只是发送处请求报文段,什么都无法确认,而服务器可以确认自己的接收能力和对方的发送能力正常;
●第二次握手:客户端可以确认自己发送能力和接收能力正常,对方发送能力和接收能力正常;
● 第三次握手:服务器可以确认自己发送能力和接收能力正常,对方发送能力和接收能力正常;
●可见三次握手才能让双方都确认自己和对方的发送和接收能力全部正常,这样就可以愉快地进行通信了。
3.告知对方自己的初始序号值,并确认收到对方的初始序号值。
●TCP 实现了可靠的数据传输,原因之一就是 TCP 报文段中维护了序号字段和确认序号字段,通过这两个字段双方都可以知道在自己发出的数据中,哪些是已经被对方确认接收的。
●这两个字段的值会在初始序号值的基础上递增,如果是两次握手,只有发起方的初始序号可以得到确认,而另一方的初始序号则得不到确认。

为什么要三次握手,难道四次或更多次不可以吗?

因为三次握手已经可以确认双方的发送接收能力正常,双方都知道彼此已经准备好,而且也可以完成对双方初始序号值的确认,也就无需再第四次握手了。
●第一次握手:服务端确认“自己收、客户端发”报文功能正常。
●第二次握手:客户端确认“自己发、自己收、服务端收、客户端发”报文功能正常,客户端认为连接已建立。
●第三次握手:服务端确认“自己发、客户端收”报文功能正常,此时双方均建立连接,可以正常通信

四次挥手

当双方结束通信,断开连接的过程称为四次挥手。
在这里插入图片描述

四次挥手即 TCP 连接的释放,这里假设客户端主动释放连接。在挥手之前主动释放连接的客户端结束ESTABLISHED 阶段,随后开始四次挥手:
1、首先客户端向服务器发送一段 TCP 报文表明其想要释放 TCP 连接,其中:
●终止位FIN和确认为ACK的值都被设置为1,表示请求释放连接;
●序号为 Seq = u;
●确认号ack = v;
●随后客户端进入 FIN-WAIT-1 阶段,即半关闭阶段,并且停止向服务端发送通信数据。
2、服务器接收到客户端请求断开连接的 FIN 报文后,结束 ESTABLISHED 阶段,进入 CLOSE-WAIT 阶段并返回一段 TCP 报文,其中:
● 标记位为 ACK = 1,表示接收到客户端释放连接的请求;
● 序号为 Seq = v;
●确认号ack字段的值设置为u+1,这是对TCP连接释放报文段的确认。
●随后服务器开始准备释放服务器端到客户端方向上的连接。
客户端收到服务器发送过来的 TCP 报文后,确认服务器已经收到了客户端连接释放的请求,随后客户端结束 FIN-WAIT-1 阶段,进入 FIN-WAIT-2 阶段。
3、服务器端在发出 ACK 确认报文后,服务器端会将遗留的待传数据传送给客户端,待传输完成后即经过 CLOSE-WAIT 阶段,便做好了释放服务器端到客户端的连接准备,再次向客户端发出一段 TCP 报文, 其中:
● 标记位为 FIN = 1 和 ACK = 1,表示已经准备好释放连接了;
●序号为 Seq = w;
● 确认号 ack = u + 1,这是对之前收到的TCP连接释放报文段的重复确认。
随后服务器端结束 CLOSE-WAIT 阶段,进入 LAST-ACK 阶段。并且停止向客户端发送数据。
4、客户端收到从服务器发来的 TCP 报文,确认了服务器已经做好释放连接的准备,于是结束 FIN-WAIT-2 阶段,进入 TIME-WAIT 阶段,并向服务器发送一段报文,其中:
●标记位为 ACK = 1,表示接收到服务器准备好释放连接的信号;
● 序号为 Seq= u + 1,表示是在已收到服务器报文的基础上,将其确认号 ack 值作为本段序号的值;
● 确认号为 ack= w + 1,这是对所收到的TCP连接释放报文段的确认。
随后客户端开始在 TIME-WAIT 阶段等待 2 MSL。服务器端收到从客户端发出的 TCP 报文之后结束LAST-ACK 阶段,进入 CLOSED 阶段。由此正式确认关闭服务器端到客户端方向上的连接。客户端等待完 2 MSL 之后,结束 TIME-WAIT 阶段,进入 CLOSED 阶段,由此完成「四次挥手」。

📑文章末尾

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/358417.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

获取依赖aar包的两种方式-在android studio里引入 如:glide

背景:我需要获取aar依赖到内网开发,内网几乎代表没网。 一、 如何需要获取依赖aar包 方式一:在官方的github中下载,耗时不建议 要从开发者网站、GitHub 存储库或其他来源获取 ‘com.github.bumptech.glide:glide:4.12.0’ AAR 包&#xff…

下拉框联动 类似于请求第一个框之后,携带参数请求后端接口,渲染第二个下来框

直接上代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>1233</title></head><body><div><!-- <table><tr><td><div class"mdui-col"><input><…

PyTorch][chapter 12][李宏毅深度学习][Semi-supervised Linear Methods-1]

这里面介绍半监督学习里面一些常用的方案&#xff1a; K-means ,HAC, PCA 等 目录&#xff1a; K-means HAC PCA 一 K-means 【预置条件】 N 个样本分成k 个 簇 step1: 初始化簇中心点 (随机从X中抽取k个样本点作为&#xff09; Repeat: For all in X: 根据其到 &…

仿真APP在金属波纹管液压胀形工艺设计中的应用

一、背景介绍 金属波纹管是带有波纹状截面的金属管状零件&#xff0c;在工业中应用广泛。金属波纹管特殊的截面形状使其具备较好的柔韧性&#xff0c;能够在一定范围内伸缩弯曲。这一特性赋予波纹管两大用途&#xff1a;一是作为变形补偿器&#xff0c;可用于补偿管道设备由于…

转盘寿司 - 华为OD统一考试

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 寿司店周年庆&#xff0c;正在举办优惠活动回馈新老用户。 寿司转盘上总共有 n 盘寿司&#xff0c; prices[i] 是第 i 盘寿司的价格。 如果客户选择了第 i 盘寿…

【论文阅读】Long-Tailed Recognition via Weight Balancing(CVPR2022)附MaxNorm的代码

目录 论文使用方法weight decayMaxNorm 如果使用原来的代码报错的可以看下面这个 论文 问题&#xff1a;真实世界中普遍存在长尾识别问题&#xff0c;朴素训练产生的模型在更高准确率方面偏向于普通类&#xff0c;导致稀有的类别准确率偏低。 key:解决LTR的关键是平衡各方面&a…

网络原理-TCP/IP(1)

应用层 我们之前编写完了基本的java socket, 要知道,我们之前所写的所有代码都在应用层中,都是为了完成某项业务,如翻译等.关于应用层,后面会有专门的讲解,在此处先讲一下基础知识. 应用层对应着应用程序,是程序员打交道最多的一层,调用系统提供的网络api写出的代码都是应用层…

如何安装配置HFS并实现无公网ip远程访问本地电脑共享文件

文章目录 前言1.下载安装cpolar1.1 设置HFS访客1.2 虚拟文件系统 2. 使用cpolar建立一条内网穿透数据隧道2.1 保留隧道2.2 隧道名称2.3 成功使用cpolar创建二级子域名访问本地hfs 总结 前言 在大厂的云存储产品热度下降后&#xff0c;私人的NAS热度快速上升&#xff0c;其中最…

【webrtc】m98 : vs2019 直接构建webrtc及moduletest工程 2

字数有限制,我们继续 【webrtc】m98 : vs2019 直接构建webrtc及unitest工程 1modules_unittests 构建 Build started... 1>------ Build started: Project: modules_unittests, Configuration: GN Win32 ------ 1>ninja: Entering directory `G:\CDN\rtcCli\m98\src\o…

导出Mysql数据库表名和字段并合并成一个word

参考链接&#xff1a; 导出MySQL数据库所有库和字段注释及相关信息为word文档——工具类 java - Apache POI - How to copy tables from one docx to another docx - Stack Overflow 领导让我研究下一个低代码平台的代码&#xff0c;我就想着做一个把数据库字段直接导出来的…

STM32F407移植OpenHarmony笔记4

上一篇写到make menuconfig报错&#xff0c;继续开整。 make menuconfig需要/device/soc/*下面有对应的Kconfig文件。 直接去gitee下载stm32的配置文件拿来参考用。 先提取Kconfig文件&#xff0c;后面再添加其它文件。https://gitee.com/openharmony/device_soc_st/tree/Open…

【React教程】(1) React简介、React核心概念、React初始化

目录 ReactReact 介绍React 特点React 的发展历史React 与 Vue 的对比技术层面开发团队社区Native APP 开发 相关资源链接 EcmaScript 6 补充React 核心概念组件化虚拟 DOM 起步初始化及安装依赖Hello World React React 介绍 React 是一个用于构建用户界面的渐进式 JavaScrip…

day33WEB 攻防-通用漏洞文件上传中间件解析漏洞编辑器安全

目录 一&#xff0c;中间件文件解析漏洞-IIS&Apache&Nginx -IIS 6 7 文件名 目录名 -Apache 换行解析 配置不当 1、换行解析-CVE-2017-15715 2、配置不当-.htaccess 配置不当 -Nginx 文件名逻辑 解析漏洞 1、文件名逻辑-CVE-2013-4547 2、解析漏洞-nginx.conf …

LLM漫谈(四)| ChatDOC:超越ChatPDF性能并支持更多功能的阅读聊天工具

在过去的一年里&#xff0c;ChatGPT的兴起催生了许多基于GPT的人工智能工具&#xff0c;其中Chat PDF工具得到了广泛关注。这些工具对知识密集型专业人员来说尤其有价值&#xff0c;大大提高了生产力。随着Chat PDF工具的激增&#xff0c;选择正确的工具变得至关重要。 接下来&…

视频转GIF动图实践, 支持长视频转GIF

背景 找了很多GIF动图制作的工具&#xff0c;比如将视频转成GIF, 或者将一系列图片转成GIF, 增加背景文案等等功能。很多收费或者用的一些三方库有点点卡顿&#xff0c;或者需要安装一个软件&#xff0c;所以就自己做一款纯前端页面级别的 视频转 GIF 动图工具。 最开始找到一…

网站地址怎么改成HTTPS?

现在&#xff0c;所有类型的网站都需要通过 HTTPS 协议进行安全连接&#xff0c;而实现这一目标的唯一方法是使用 SSL 证书。如果您不将 HTTP 转换为 HTTPS&#xff0c;浏览器和应用程序会将您网站的连接标记为不安全。 但用户询问如何将我的网站从 HTTP 更改为 HTTPS。在此页…

米贸搜|如何“有效利用”Facebook动态广告?!

什么是动态广告&#xff1f; 在我们的日常在线购物经验中&#xff0c;我们经常遇到这样的情况&#xff1a;在某宝平台上浏览或搜索一款产品后&#xff0c;不久你就会发现&#xff0c;平台开始向你推荐与你之前浏览过的商品相似的其他商品。这种商品推荐通常非常符合你的口味&a…

用可视化表单设计轻松实现流程化办公!

在现代化职场办公中&#xff0c;低代码技术平台的利用程度越来越高&#xff0c;成为大家实现流程化办公和数字化转型的友好合作伙伴。作为专业的服务商&#xff0c;流辰信息潜心研发低代码技术平台产品及可视化表单设计工具&#xff0c;轻松助力越来越多行业的客户朋友提高办公…

C语言应用实例——贪吃蛇

&#xff08;图片由AI生成&#xff09; 0.贪吃蛇游戏背景 贪吃蛇游戏&#xff0c;最早可以追溯到1976年的“Blockade”游戏&#xff0c;是电子游戏历史上的一个经典。在这款游戏中&#xff0c;玩家操作一个不断增长的蛇&#xff0c;目标是吃掉出现在屏幕上的食物&#xff0c…

多线程事务如何回滚?

背景介绍 1&#xff0c;最近有一个大数据量插入的操作入库的业务场景&#xff0c;需要先做一些其他修改操作&#xff0c;然后在执行插入操作&#xff0c;由于插入数据可能会很多&#xff0c;用到多线程去拆分数据并行处理来提高响应时间&#xff0c;如果有一个线程执行失败&am…