【Linux】—— 信号的产生

本期,我们今天要将的是信号的第二个知识,即信号的产生。

目录

(一)通过终端按键产生信号

(二)调用系统函数向进程发信号

(三)由软件条件产生信号

(四)硬件异常产生信号

(五)小结


(一)通过终端按键产生信号

SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump,现在我们来验证一下。

我们之前学习进程等待的时候,给大家介绍了以下这张图片,其中【core dump】没有讲,今天我将给大家解释这个词的含义。

 【解释说明】

  1. 首先解释什么是Core Dump。Linux提供了一种能力,当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部保存到磁盘上,文件名通常是core,这叫做Core Dump(在云服务器上默认是关闭这个功能的!!!);
  2. 进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试);
  3. 一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中);
  4. 默认是不允许产生core文件的,因为core文件中可能包含用户密码等敏感信息,不安全;
  5. 在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K:  ulimit -c1024

命令用于显示有关用户当前资源限制(ulimits)的信息。此命令显示各种系统资源的硬限制和软限制,以下是一个示例输出: 

【解释说明】

  • core文件大小: core转储的最大大小(以块为单位)。
  • 数据段大小: 进程的数据区大小(以千字节为单位)。
  • 文件大小: 文件的最大大小(以块为单位)。
  • 最大锁定内存: 锁定在内存中的地址空间的最大大小(以千字节为单位)。
  • 最大内存大小: 进程可以拥有的最大数据大小(以千字节为单位)。
  • 打开文件数: 进程可以拥有的最大文件描述符数量。
  • 堆栈大小: 进程的堆栈大小(以千字节为单位)。
  • CPU时间: 进程可以消耗的最大CPU时间(以秒为单位)。
  • 最大用户进程数: 用户可以创建的最大进程数。
  • 虚拟内存大小: 进程可用的虚拟内存大小(以千字节为单位)。

【注意】

  • 值为“无限制”表示该特定资源没有设置特定限制;
  • 可以使用 ulimit 命令或通过修改配置文件来调整这些限制。请注意,特定资源及其限制可能因操作系统和系统配置而异。

接下来,我们手动设置核心转储文件的大小。具体如下:

【解释说明】

  • 上述命令用于设置核心文件的最大大小为10240个块(通常每个块大小为字节,具体大小取决于系统设置);
  • -c: 表示设置或显示核心文件的最大大小限制。
  • 10240: 表示核心文件的最大大小限制为10240个块。如果以字节计算,这意味着核心文件的最大大小为10240个块乘以每个块的字节数。

  • 接下来,我们查询 signal信号。发现信号后面的有的是【term】,有的是【core】。具体如下:

【解释说明】

  • 【term】 是一个信号名称,它代表着进程正常终止信号,无其他操作;
  • 【core】通常指的是在进程异常终止(如段错误)时生成的核心转储文件。这个文件包含了进程在崩溃时的内存映像,可以用于调试和分析问题。当一个进程崩溃时,操作系统通常会生成一个名为 core 的文件,其中包含了进程在崩溃瞬间的内存状态。

接下来,我们就去验证上述结论: 

  • 首先,这里有几行简单的代码: 
int main(int argc, char *argv[])
{

    while (true)
    {
        cout << "我是一个正常运行的进程:" << getpid() << endl; 
        sleep(1);
    }
    return 0;
}
  • 紧接着,我们先让程序正常的跑起来:

  •  程序可以正常运行之后,接下来,我先测试上述信号中后面标志为【term】的,看测试效果:

  •  接下来,我先测试上述信号中后面标志为【core】的,看测试效果:

  • 当我们打开这个文件时,发现全是乱码(因为这是给OS看的,不是给用户看的):

ulimit命令改变了Shell进程的Resource Limit,test进程的PCB由Shell进程复制而来,所以也具 有和Shell进程相同的Resource Limit值,这样就可以产生Core Dump了。 使用core文件:


(二)调用系统函数向进程发信号

首先在后台执行死循环程序,然后用kill命令给它发SIGSEGV信号

【解释说明】

  • 3995是test进程的id。之所以要再次回车才显示 Segmentation fault ,是因为在3995进程终止掉 之前已经回到了Shell提示符等待用户输入下一条命令,Shell不希望Segmentation fault信息和用 户的输入交错在一起,所以等用户输入命令之后才显示。
  • 指定发送某种信号的kill命令可以有多种写法,上面的命令还可以写成 kill -SIGSEGV 3995或 kill -11 3995, 11是信号SIGSEGV的编号。以往遇 到的段错误都是由非法内存访问产生的,而这个程序本身没错,给它发SIGSEGV也能产生段错误

kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。

  • 函数的原型如下:
#include <signal.h>

int kill(pid_t pid, int sig);
  • pid_t pid: 要发送信号的进程的进程ID。如果 pid 为正数,信号将发送到具有该进程ID的进程。如果 pid 为0,信号将发送到与调用进程属于同一进程组的所有进程。如果 pid 为-1,信号将发送到调用进程有权限发送信号的所有进程。
  • int sig: 要发送的信号的编号。

而raise函数可以给当前进程发送指定的信号(自己给自己发信号)

  • 函数的原型如下:
#include <signal.h>

int raise(int sig);
  • int signo:要发送的信号的编号。

abort函数使当前进程接收到信号而异常终止

  • 函数的原型如下:
#include <cstdlib>

void abort(void);

使用abort函数非常简单,只需在需要终止进程的地方调用它即可。当调用abort函数时,以下操作将被执行:

  1. 向当前进程发送SIGABRT信号。
  2. 默认情况下,SIGABRT信号会导致进程终止,并生成一个核心转储文件。
  3. 终止处理程序会被启动,这是一个特殊的信号处理程序,可以用来执行一些清理工作或记录错误信息。
  4. 如果没有安装终止处理程序,或者终止处理程序调用了_Exit函数或返回,则进程会异常终止,并打印一条错误消息到标准错误流(stderr)。

代码展示: 

void cleanup() {
    std::cout << "Performing cleanup before aborting..." << std::endl;
    // 执行一些清理工作
}

void handler(int signo) {
    std::cout << "Received signal " << signo << std::endl;
    // 自定义信号处理逻辑
    exit(signo);
}

int main() 
{
    // 注册终止处理程序
    if (atexit(cleanup) != 0) {
        std::cerr << "Failed to register cleanup function" << std::endl;
        exit(EXIT_FAILURE);
    }

    // 注册信号处理函数
    if (signal(SIGABRT, handler) == SIG_ERR) {
        std::cerr << "Failed to register signal handler" << std::endl;
        exit(EXIT_FAILURE);
    }

    std::cout << "Starting program..." << std::endl;
    std::cout << "Triggering abort..." << std::endl;

    // 调用abort函数,触发进程终止
    abort();

    std::cout << "This line will not be reached" << std::endl;

    return 0;
}

输出展示:

【解释说明】

  • 在调用abort函数后,程序收到了SIGABRT信号,并执行了注册的终止处理程序和信号处理函数;
  • 就像exit函数一样,abort函数总是会成功的,所以没有返回值
     

(三)由软件条件产生信号

SIGPIPE是一种由软件条件产生的信号,在“管道”中已经介绍过了。本节主要介绍alarm函数 和SIGALRM信号。

#include <unistd.h>
unsigned int alarm(unsigned int seconds);

调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号, 该信号的默认处理动作是终止当前进程。
  • 接下来,我简单的演示一下这个函数:
//io的效率低下
int main()
{
    alarm(1);
    int count = 0;
    while (true) 
    {
        // 打印,显示器打印网络
        std::cout << "count : " << count++ << std::endl; //1s之内计算机将一个正数累计到多少
    }
    return 0;
}
  • 多跑几次程序我们可以发现打印出来的结果都是不同的: 

  • 当我们此时真正想测试计算机的算力时,我们可以像如下这样: 
int count = 0;

void myhandler(int signo)
{
    std::cout << "get a signal: " << signo << " count: " << count << std::endl;
    exit(0);
}

int main(int argc, char *argv[])
{
    signal(SIGALRM,myhandler);
    alarm(1);
    while (true) count++;
   
    return 0;
}
  • 多跑几次程序我们可以发现打印出来的结果跟上完全是天差地别:


  1. 上述 alarm 这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数;
  2. 打个比方,某人要小睡一觉,设定闹钟为30分钟之后响,20分钟后被人吵醒了,还想多睡一会儿,于是重新设定闹钟为15分钟之后响,“以前设定的闹钟时间还余下的时间”就是10分钟;
  3. 如果seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数
     

接下来,我们代码简单的演示一下:

void myhandler(int signo)
{
    std::cout << "get a signal: " << signo << " count: " << count << std::endl;
    int n = alarm(10);
    std::cout << "return: " << n << std::endl;
}

int main(int argc, char *argv[])
{
    std::cout << "pid: " << getpid() << std::endl;
    signal(SIGALRM,myhandler);
    alarm(10);

    while(true)
    {
        sleep(1);
    }

    return 0;
}

输出展示: 


(四)硬件异常产生信号

硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释 为SIGFPE信号发送给进程。再比如当前进程访问了非法内存地址,,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。


(五)小结

以上便是本文的主要内容,接下来简单小结本文都讲了些什么!!!

在Linux中,信号可以通过多种方式产生,包括:

  1. 硬件异常: 这些是由硬件引起的异常事件,例如:

    • 除零错误(SIGFPE): 当程序尝试执行除以零的操作时,会产生 SIGFPE 信号。
    • 无效内存访问(SIGSEGV): 当程序尝试访问未分配给它的内存地址时,会产生 SIGSEGV 信号。
    • 内存访问越界(SIGBUS): 当程序尝试访问无效的内存地址时,会产生 SIGBUS 信号。
  2. 软件中断: 这些是由软件引发的事件,通常是为了通知进程已经达到了某个预定条件,例如:

    • 定时器超时(SIGALRM): 当一个定时器达到设定的时间时,会产生 SIGALRM 信号。
  3. 其他进程发送信号: 一个进程可以通过系统调用向另一个进程发送信号,例如:

    • kill 命令: 通过命令行的 kill 命令或者在程序中使用 kill 函数可以向指定的进程发送信号。
    • 终端操作: 用户在终端中执行特定的操作,例如按下 Ctrl+C 组合键,会向当前前台进程发送 SIGINT 信号。
  4. 进程自身发送信号: 进程可以通过调用 raise 函数或者 kill 函数向自身发送信号。

    • 调用 kill 函数: 进程可以使用 kill 函数向自身发送信号,使用进程ID为 getpid()
  5. 软件条件满足: 在程序中,当特定的条件满足时,可以使用信号来通知其他部分程序执行某些动作,这通常需要由程序本身显示地触发。

以上便是本文的全部内容了,感谢大家的观看和支持!!!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/357767.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

硬件知识(2) 手机的传感器-sensor

#灵感# 看看小米在干啥 手机型号&#xff1a;Redmi Note 13 Pro&#xff0c;解读一下它宣传的手机卖点。 目录 宣传1&#xff1a;1/1.4" 大底&#xff0c;f/1.65 大光圈&#xff0c; 宣传2&#xff1a;支持 2 亿像素超清直出&#xff0c;分辨率高达 16320 x 12240 宣…

SeaTunnel Web安装 一把成

安装相关jar包&#xff0c;以及SeaTunnel 和Web 打成的包&#xff0c;可以直接使用&#xff0c;但是需要安装MySQL客户端的分享&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1qrt1RAX38SgIpNklbQJ7pA 提取码&#xff1a;0kmf 1. 环境准备 环境名称版本系统环境C…

叙永微公益开展“暖冬童梦·妙想之旅”未成年关爱活动第一天

为了丰富未成年人的寒假生活&#xff0c;让他们在轻松愉快的氛围中发挥创意、锻炼动手能力&#xff0c;同时也能得到学习的辅导。叙永县微公益协会组织大学生志愿者在叙永县新时代文明实践中心、叙永县社工总站、叙永县一品城小区、古寨社区开展为期一周的未成年关爱陪伴活动。…

使用plotly dash 画3d圆柱(Python)

plotly3D &#xff08;3d charts in Python&#xff09;可以画3维图形 在做圆柱的3D装箱项目&#xff0c;需要装箱的可视化&#xff0c;但是Mesh &#xff08;3d mesh plots in Python&#xff09;只能画三角形&#xff0c;所以需要用多个三角形拼成一个圆柱&#xff08;想做立…

四、ES集群安全策略设置 X-pack

本文主要是结合ES集群搭建时使用&#xff0c;并且适用于ES7.x以上版本 背景及安全策略方案对比 ES 7.x以下版本默认几乎没有任何安全策略&#xff0c;如果集群IP、端口被暴露&#xff0c;在可访问的情况下任何用户都可以对索引进行管理以及数据的增删改查等&#xff0c;基于此需…

国外非常好的渗透测试资源集合和十大渗透测试演练系统,系统被攻击渗透入侵后进行取证和溯源

国外非常好的渗透测试资源集合和十大渗透测试演练系统,系统被攻击渗透入侵后进行取证和溯源。 Awesome Penetration Testing A collection of awesome penetration testing resources Online Resources Penetration Testing Resources Exploit development Social Enginee…

成功解决AttributeError: ‘str‘ object has no attribute ‘get‘

成功解决AttributeError: ‘str’ object has no attribute ‘get’. &#x1f335;文章目录&#x1f335; &#x1f333;引言&#x1f333;&#x1f333;报错分析及解决方案&#x1f333;&#x1f333;字典对象的get方法&#x1f333;&#x1f333;结尾&#x1f333; &#x1…

安全测试-pikachu靶场搭建

pikachu靶场搭建 文章目录 pikachu安装步骤 pikachu pikachu是一个自带web漏洞的应用系统&#xff0c;在这里包含了常见的web安全漏洞&#xff0c;也就是练习的靶场。 练习内容包括&#xff1a; 1.暴力破解 2.XSS 3.CSRF 4.SQL注入 5.RCE 6.文件包含 7.不安全的文件下载 8.不安…

免 费 小程序商城搭建之b2b2c o2o 多商家入驻商城 直播带货商城 电子商务b2b2c o2o 多商家入驻商城 直播带货商城 电子商务

1. 涉及平台 平台管理、商家端&#xff08;PC端、手机端&#xff09;、买家平台&#xff08;H5/公众号、小程序、APP端&#xff08;IOS/Android&#xff09;、微服务平台&#xff08;业务服务&#xff09; 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前端框架…

c语言学习笔记

逗号表达式 #include <stdio.h>int main(){int a 10;int b 5;int c 6;int d (a 23,b a-4,c b2);printf("%d",d); }打印结果为: 逗号表达式,从左往右依次进行,将最后一个表达式的值赋值给变量. c语言字符串相关库函数 求字符串长度strlen长度不受限制的…

web wifi配网和模式切换-esp8266和esp32

web wifi配网和模式切换-esp8266和esp32 支持模式:1:tcp client() 2:tcp server 3:http server(POST/GET) 4:http client 5:udp,6:factory,7:mqtt 配网进入方式&#xff1a; 开机&#xff0c;指示灯亮起后(需要灯闪烁3下后)&#xff0c;需在3s内&#xff08;超过3s则会正常启动…

WebGL技术开发框架

WebGL技术框架是一些提供了便捷API和工具的库&#xff0c;用于简化和加速在Web浏览器中使用WebGL进行3D图形开发。以下是一些常用的WebGL技术框架&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.Th…

vue+ElementPlus实现中国省市区三级级联动封装

安装插件获取中国省份的所有数据 npm install element-china-area-data -S 借助ElementPlus 级联选择器 Cascader实现 <template><div><el-cascadersize"large":options"options"v-model"selectedOptions"change"handleCh…

32OLED中断系统&对射式红外计数&旋转编码计数

一.程序调试方式 二.OLED简介 stm32引脚上电后&#xff0c;如果不初始化&#xff0c;默认是浮空输入的模式&#xff0c;在这个模式下引脚不会输出电平 三. 中断系统 EXTI外部中断&#xff0c;TIM定时器&#xff0c;ADC模数转换器&#xff0c;USART串口&#xff0c;SPI通信&…

【SpringBoot3】集成Knife4j、springdoc-openapi作为接口文档

一、什么是springdoc-openapi Springdoc-openapi 是一个用于生成 OpenAPI&#xff08;之前称为 Swagger&#xff09;文档的库&#xff0c;专为 Spring Boot 应用程序设计。它可以根据你的 Spring MVC 控制器、REST 控制器和其他 Spring Bean 自动生成 OpenAPI 文档&#xff0c…

Google Chrome 中出现 ERR_SSL_KEY_USAGE_INCOMPATIBLE 错误

证书的方式发生了变化&#xff0c;出现了这个新错误&#xff0c;导致我无法浏览该网站。 可以右键属性获取位置 关闭导航器chrome并转到文件夹&#xff0c;找到Local State文件并删除 执行指令结束进程&#xff0c;重新打开浏览器即可 taskkill /im "chrome.exe"…

Unity3d实现简单的战斗

使用u3d实现一个简单的战斗demo&#xff0c;记下学到的知识点&#xff0c;以备后查。 1.判断是否点中指定物体 if (Input.GetMouseButton(0)) {Ray ray Camera.main.ScreenPointToRay(Input.mousePosition);if (Physics.Raycast(ray, out RaycastHit hit)){//坐标转换Vector…

PeakCAN连接到WSL2 Debian

操作步骤 按照以下步骤进行操作&#xff1a; 在Windows下安装PeakCAN驱动并安装&#xff0c;地址是https://www.peak-system.com/PCAN-USB.199.0.html?&L1 在Windows下安装usbipd&#xff0c;地址是https://github.com/dorssel/usbipd-win/releases&#xff0c;最新版是…

我们是如何测试人工智能的(六)推荐系统拆解

推荐系统简介 推荐系统的问题 根据之前学习到的内容&#xff0c;我们已经基本了解到了要如何构建一个二分类模型。我们都知道模型大体可以分成&#xff0c;回归&#xff0c;二分类和多分类。但推荐系统是属于哪一种场景呢&#xff0c;比如我们常见的广告推荐或者内容推荐&…

线性代数---------学习总结

线性代数之行列式 行列式的几条重要的性质 1.某两行某两列交换位置之后&#xff0c;值变号 2.行列式转置&#xff0c;值不变 3.范德蒙德行列式&#xff0c;用不同行的公比做一系列的累乘运算 4.把某一行的行列式加到另一行上&#xff0c;利用他们之间的倍数关系&#xff0…